×

Chaotic behavior in fractional Helmholtz and Kelvin-Helmholtz instability problems with Riesz operator. (English) Zbl 1496.65125

Summary: This paper introduces some important dissipative problems that are recent and still of intermittent interest. The classical dynamics of Helmholtz and Kelvin-Helmholtz instability equations are modeled with the Riesz operator which incorporates the left- and right-sided of the Riemann-Liouville non-integer order operators to mimic naturally the physical patterns of these models arising in hydrodynamics and geophysical fluids. The Laplace and Fourier transform techniques are used to approximate the Riesz fractional operator in a spatial direction. The behaviors of the Helmholtz and Kelvin-Helmholtz equations are observed for some values of fractional power in the regimes, \(0<\alpha\leq1\) and \(1<\alpha\leq2\), using different boundary conditions on a square domain in 1D, 2D and 3D (spatial-dimensions). Numerical results reveal some astonishing and very impressive phenomena which arise due to the variations in the initial and source function, as well as fractional parameter \(\alpha\), for subdiffusive and superdiffusive scenarios.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65N06 Finite difference methods for boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35B36 Pattern formations in context of PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
44A10 Laplace transform
65T50 Numerical methods for discrete and fast Fourier transforms
76D50 Stratification effects in viscous fluids
86A05 Hydrology, hydrography, oceanography
Full Text: DOI

References:

[1] Atangana, A., Derivative with a New Parameter: Theory, Methods and Applications (Academic Press, New York, 2016). · Zbl 1342.26020
[2] Atangana, A., Fractional Operators With Constant and Variable Order with Application to Geo-Hydrology (Academic Press, New York, 2017). · Zbl 1386.86001
[3] Owolabi, K. M., Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative, Numer. Methods Partial Differential Equations34 (2018) 274-295. · Zbl 1390.65046
[4] Owolabi, K. M., Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Math. Model. Nat. Phenom.13(7) (2018). · Zbl 1410.65323
[5] Owolabi, K. M., Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, Eur. Phys. J. Plus133 (2018) 98.
[6] Owolabi, K. M., Riemann-Liouville fractional derivative and application to model chaotic differential equations, Prog. Fract. Differ. Appl.4 (2018) 99-110.
[7] Ding, Q., Abba, O. A., Jahanshahi, H., Alassafi, M. O. and Huang, W.-H., Dynamical investigation, electronic circuit realization and emulation of a fractional-order chaotic three-echelon supply chain system, Mathematics10(4) (2022) 625.
[8] Owolabi, K. M., Efficient numerical simulation of non-integer-order space-fractional reaction-diffusion equation via the Riemann-Liouville operator, Eur. Phys. J. Plus133(3) (2018) 1-16.
[9] Owolabi, K. M., Numerical approach to fractional blow-up equations with Atangana-Baleanu derivative in Riemann-Liouville sense, Math. Model. Nat. Phenom.13(1) (2018) 7. · Zbl 1410.65323
[10] Atangana, A., Derivative with a New Parameter: Theory, Methods and Applications (Academic Press, 2015). · Zbl 1342.26020
[11] Atangana, A., Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology (Academic Press, 2017). · Zbl 1386.86001
[12] Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J. M., Moroz, I., Wei, Z. and Castillo, O., A new multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: Dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method, Appl. Soft Comput.87 (2020) 105943.
[13] Wang, S., He, S., Yousefpour, A., Jahanshahi, H., Repnik, R. and Perc, M., Chaos and complexity in a fractional-order financial system with time delays, Chaos Solitons Fractals131 (2020) 109521. · Zbl 1495.91117
[14] Soradi-Zeid, S., Jahanshahi, H., Yousefpour, A. and Bekiros, S., King algorithm: A novel optimization approach based on variable-order fractional calculus with application in chaotic financial systems, Chaos Solitons Fractals132 (2020) 109569. · Zbl 1434.65084
[15] Wang, S., Bekiros, S., Yousefpour, A., He, S., Castillo, O. and Jahanshahi, H., Synchronization of fractional time-delayed financial system using a novel type-2 fuzzy active control method, Chaos Solitons Fractals136 (2020) 109768. · Zbl 1489.93064
[16] Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J. M., Kacar, S., Pham, V.-T. and Alsaadi, F. E., A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption, Appl. Math. Comput.383 (2020) 125310. · Zbl 1508.94058
[17] Chen, S.-B., Jahanshahi, H., Abba, O. A., Solís-Pérez, J. E., Bekiros, S., Gómez-Aguilar, J. F., Yousefpour, A. and Chu, Y.-M., The effect of market confidence on a financial system from the perspective of fractional calculus: Numerical investigation and circuit realization, Chaos Solitons Fractals140 (2020) 110223. · Zbl 1495.91135
[18] Chen, S.-B., Soradi-Zeid, S., Jahanshahi, H., Alcaraz, R., Gómez-Aguilar, J. F., Bekiros, S. and Chu, Y.-M., Optimal control of time-delay fractional equations via a joint application of radial basis functions and collocation method, Entropy22(11) (2020) 1213.
[19] Wang, B., Jahanshahi, H., Bekiros, S., Chu, Y.-M., Gomez-Aguilar, J. F., Alsaadi, F. E. and Alassafi, M. O., Tracking control and stabilization of a fractional financial risk system using novel active finite-time fault-tolerant controls, Fractals29(6) (2021) 2150155-2150177. · Zbl 1482.91215
[20] Wang, B., Jahanshahi, H., Volos, C., Bekiros, S., Khan, M. A., Agarwal, P. and Aly, A. A., A new RBF neural network-based fault-tolerant active control for fractional time-delayed systems, Electronics10(12) (2021) 1501.
[21] Zúñiga-Aguilar, C. J., Gómez-Aguilar, J. F., Romero-Ugalde, H. M., Jahanshahi, H. and Alsaadi, F. E., Fractal-fractional neuro-adaptive method for system identification, Eng. Comput. (2021) 1-24.
[22] Rajagopal, K., Jahanshahi, H., Jafari, S., Weldegiorgis, R., Karthikeyan, A. and Duraisamy, P., Coexisting attractors in a fractional order hydro turbine governing system and fuzzy PID based chaos control, Asian J. Control23(2) (2021) 894-907. · Zbl 07878858
[23] Xiong, P.-Y., Jahanshahi, H., Alcaraz, R., Chu, Y.-M., Gómez-Aguilar, J. F. and Alsaadi, F. E., Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique, Chaos Solitons Fractals144 (2021) 110576. · Zbl 1498.34175
[24] Jahanshahi, H., Sajjadi, S. S., Bekiros, S. and Aly, A. A., On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller, Chaos Solitons Fractals144 (2021) 110698.
[25] Chu, Y.-M., Bekiros, S., Zambrano-Serrano, E., Orozco-López, O., Lahmiri, S., Jahanshahi, H. and Aly, A. A., Artificial macro-economics: A chaotic discrete-time fractional-order laboratory model, Chaos Solitons Fractals145 (2021) 110776.
[26] Li, J.-F., Jahanshahi, H., Kacar, S., Chu, Y.-M., Gómez-Aguilar, J. F., Alotaibi, N. D. and Alharbi, K. H., On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos Solitons Fractals145 (2021) 110681. · Zbl 1498.94070
[27] Wang, Y.-L., Jahanshahi, H., Bekiros, S., Bezzina, F., Chu, Y.-M. and Aly, A. A., Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence, Chaos Solitons Fractals146 (2021) 110881. · Zbl 1498.93086
[28] Wang, H., Jahanshahi, H., Wang, M.-K., Bekiros, S., Liu, J. and Aly, A. A., A Caputo Fabrizio fractional-order model of HIV/AIDS with a treatment compartment: Sensitivity Analysis and optimal control strategies, Entropy23(5) (2021) 610.
[29] Cuahutenango-Barro, B., Taneco-Hernández, M. A., Lv, Y.-P., Gómez-Aguilar, J. F., Osman, M. S., Jahanshahi, H. and Aly, A. A., Analytical solutions of fractional wave equation with memory effect using the fractional derivative with exponential kernel, Results Phys.25 (2021) 104148.
[30] Chen, S.-B., Soradi-Zeid, S., Alipour, M., Chu, Y.-M., Gomez-Aguilar, J. F. and Jahanshahi, H., Optimal control of nonlinear time-delay fractional differential equations with Dickson polynomials, Fractals29(4) (2021) 2150079. · Zbl 1481.49032
[31] Pandey, P., Chu, Y.-M., Gómez-Aguilar, J. F., Jahanshahi, H. and Aly, A. A., A novel fractional mathematical model of COVID-19 epidemic considering quarantine and latent time, Results Phys.26 (2021) 104286.
[32] Liu, Z., Jahanshahi, H., Gómez-Aguilar, J. F., Fernandez-Anaya, G., Torres-Jiménez, J., Aly, A. A. and Aljuaid, A. M., Fuzzy adaptive control technique for a new fractional-order supply chain system, Phys. Scr.96(12) (2021) 124017.
[33] Wang, B., Jahanshahi, H., Dutta, H., Zambrano-Serrano, E., Grebenyuk, V., Bekiros, S. and Aly, A. A., Incorporating fast and intelligent control technique into ecology: A Chebyshev neural network-based terminal sliding mode approach for fractional chaotic ecological systems, Ecol. Complexity47 (2021) 100943.
[34] Salinas-Peña, P. I., Taneco-Hernández, M. A., González-Calderon, A., Lv, Y.-P., Gómez-Aguilar, J. F., Jahanshahi, H., Aly, A. A. and Alharthi, M. M., A initial-boundary value problem of a biofluid influenced by a magnetic field using a fractional differential operator with non-singular kernel, Results Phys.28 (2021) 104633.
[35] Zambrano-Serrano, E., Bekiros, S., Platas-Garza, M. A., Posadas-Castillo, C., Agarwal, P., Jahanshahi, H. and Aly, A. A., On chaos and projective synchronization of a fractional difference map with no equilibria using a fuzzy-based state feedback control, Physica A578 (2021) 126100. · Zbl 1527.39008
[36] Debbouche, N., Ouannas, A., Batiha, I. M., Grassi, G., Kaabar, M. K. A., Jahanshahi, H., Aly, A. A. and Aljuaid, A. M., Chaotic behavior analysis of a new incommensurate fractional-order hopfield neural network system, Complexity2021 (2021) 3394666.
[37] Wang, B., Liu, J., Alassafi, M. O., Alsaadi, F. E., Jahanshahi, H. and Bekiros, S., Intelligent parameter identification and prediction of variable time fractional derivative and application in a symmetric chaotic financial system, Chaos Solitons Fractals154 (2022) 111590.
[38] He, Z.-Y., Abbes, A., Jahanshahi, H., Alotaibi, N. D. and Wang, Y., Fractional-order discrete-time SIR epidemic model with vaccination: Chaos and complexity, Mathematics10(2) (2022) 165.
[39] Oussaeif, T.-E., Antara, B., Ouannas, A., Batiha, I. M., Saad, K. M., Jahanshahi, H., Aljuaid, A. M. and Aly, A. A., Existence and uniqueness of the solution for an inverse problem of a fractional diffusion equation with integral condition, J. Funct. Spaces2022 (2022) 7667370. · Zbl 1490.35544
[40] Wang, B., Ouannas, A., Karaca, Y., Xia, W.-F., Jahanshahi, H., Alkhateeb, A. F. and Nour, M., A hybrid approach for synchronizing between two reaction-diffusion systems of integer-and fractional-order applied on certain chemical models, Fractals30 (2022) 2240145. · Zbl 1498.93696
[41] Wang, B., Jahanshahi, H., Karaca, Y., Bekiros, S., Xia, W.-F., Alkhateeb, A. F. and Nour, M., Use of evolutionary algorithms in a fractional framework to prevent the spread of coronavirus, Fractals30 (2022) 2240146. · Zbl 1498.92267
[42] Jahanshahi, H., Zambrano-Serrano, E., Bekiros, S., Wei, Z., Volos, C., Castillo, O. and Aly, A. A., On the dynamical investigation and synchronization of variable-order fractional neural networks: The Hopfield-like neural network model, Eur. Phys. J. Spec. Top. (2022), https://doi.org/10.1140/epjs/s11734-022-00450-8.
[43] Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations (Elsevier, Amsterdam, 2006). · Zbl 1092.45003
[44] Miller, K. S. and Ross, B., An Introduction to the Fractional Calculus and Fractional Differential Equations (John Wiley & Sons, New York, 1993). · Zbl 0789.26002
[45] Ortigueira, M. D., Fractional Calculus for Scientists and Engineers (Springer, New York, 2011). · Zbl 1251.26005
[46] Podlubny, I., Fractional Differential Equations (Academic Press, San Diego, 1999). · Zbl 0924.34008
[47] Samko, S., Kilbas, A. and Marichev, O., Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Amsterdam, 1993). · Zbl 0818.26003
[48] Owolabi, K. M., Computational analysis of different pseudoplatystoma species patterns the Caputo-Fabrizio derivative, Chaos Solitons Fractals144 (2021) 110675. · Zbl 1498.92028
[49] Owolabi, K. M., Numerical patterns in reaction-diffusion system with the Caputo and Atangana-Baleanu fractional derivatives, Chaos Solitons and Fractals115 (2018) 160-169. · Zbl 1416.65305
[50] Owolabi, K. M. and Atangana, A., Robustness of fractional difference schemes via the Caputo subdiffusion-reaction equations, Chaos Solitons Fractals111 (2018) 119-127. · Zbl 1395.65026
[51] Chen, D., Wu, T. and Yang, H., An optimal 25-point finite difference scheme for the Helmholtz equation with PML, J. Comput. Appl. Math.236 (2011) 1240-1258. · Zbl 1233.65076
[52] Wu, Z. and Alkhalifah, T., A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation, J. Comput. Phys.365 (2018) 350-361. · Zbl 1398.65268
[53] L. Kelvin, Hydrokinetic solutions and observations, Philos. Mag. (4) 42 (1871) 362.
[54] H. Helmholtz, On discontinuous movement of fluids, Philos. Mag. (4) 36 (1868) 337. · JFM 01.0343.05
[55] Danaila, I., Joly, P., Kaber, S. M. and Postel, M., An Introduction to Scientific Computing (Springer, Paris, 2007). · Zbl 1119.65060
[56] Gardner, C. L. and Dwyer, S. J., Numerical simulation of the {XZ} tauri supersonic astrophysical jet, Acta Math. Sci.29 (2009) 1677. · Zbl 1201.76223
[57] Feng, L., Inhester, B. and Gan, W. Q., Kelvin-Helmholtz instability of a coronal streamer, Astrophys. J. Lett.774 (2013) 141.
[58] Wan, W. C.et al., Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow, Phys. Rev. Lett.115 (2015) 145001.
[59] Thorpe, S. A., Transitional phenomena and the development of turbulence in stratified fluids: A review, J. Geophys. Res.92 (1987) 5231.
[60] Thorpe, S. A., Experiments on the instability and turbulence in a stratified shear flow, J. Fluid Mech.61731 (1973).
[61] Chen, Z., Cheng, D. and Wu, T., A dispersion minimizing finite difference scheme and preconditioned solver for the 3D Helmholtz equation, J. Comput. Phys.231 (2012) 8152-8175. · Zbl 1284.35145
[62] Chen, Z., Cheng, D., Feng, W. and Wu, T., An optimal 9-point finite difference scheme for the Helmholtz equation with PML, Int. J. Numer. Anal. Model.10 (2013) 389-410. · Zbl 1272.65081
[63] Chen, D., Tana, X. and Zeng, T., A dispersion minimizing finite difference scheme for the Helmholtz equation based on point-weighting, Comput. Math. Appl.73 (2017) 2345-2359. · Zbl 1373.65077
[64] https://www.google.com/search?q=kelvin-helmholtz+instability&sxsrf.
[65] Baskin, D., Spence, E. A. and Wunsch, J., Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations, SIAM J. Math. Anal.48 (2016) 229-267. · Zbl 1341.35013
[66] Li, J., Yang, D., Wu, H. and Ma, X., A low-dispersive method using the high-order stereo-modelling operator for solving 2-d wave equations, Geophys. J. Int.210 (2017) 1938-1964.
[67] Wu, T., A dispersion minimizing compact finite difference scheme for the 2D Helmholtz equation, J. Comput. Appl. Math.311 (2017) 497-512. · Zbl 1352.65426
[68] Owolabi, K. M. and Atangana, A., Numerical solution of fractional-in-space nonlinear Schrödinger equation with the Riesz fractional derivative, Eur. Phys. J. Plus131 (2016) 335.
[69] Owolabi, K. M., Computational techniques for highly oscillatory and chaotic wave problems with fractional-order operator, Eur. Phys. J. Plus135 (2020) 864.
[70] Owolabi, K. M. and Baleanu, D., Emergent patterns in diffusive Turing-like systems with fractional-order operator, Neural. Comput. Appl.33 (2021) 12703-12720.
[71] Yang, Q., Liu, F. and Turner, I., Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. Math. Model.34 (2010) 200-218. · Zbl 1185.65200
[72] Liu, F., Chen, S., Turner, I., Burrage, K. and Anh, V., Numerical simulation for two-dimensional Riesz space fractional diffusion equations with a nonlinear reaction term, Cent. Eur. J. Phys.10 (2013) 1221-1232.
[73] Liu, F., Zhuang, P., Anh, V., Turner, I. and Burrage, K., Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation, Appl. Math. Comput.191 (2007) 12-20. · Zbl 1193.76093
[74] Owolabi, K. M., High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology, Chaos Solitons Fractals134 (2020) 109723. · Zbl 1483.35117
[75] Owolabi, K. M., Mathematical analysis and numerical simulation of chaotic noninteger order differential systems with Riemann-Liouville derivative, Prog. Fract. Differ. Appl.6 (2020) 29-42.
[76] Owolabi, K. M., Numerical simulation of fractional-order reaction-diffusion equations with the Riesz and Caputo derivatives, Neural. Comput. Appl.32 (2020) 4093-4104.
[77] Kim, S., Analysis of the convected Helmholtz equation with a uniform mean flow in a waveguide with complete radiation boundary conditions, J. Math. Anal. Appl.410 (2014) 275-291. · Zbl 1316.35094
[78] Abuasada, S., Moaddy, K. and Hashim, I., Analytical treatment of two-dimensional fractional Helmholtz equations, J. King Saud Univ. Sci.31 (2019) 659-666.
[79] Babuška, I., Ihlenburg, F., Paik, E. T. and Sauter, S. A., A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Eng.128 (1995) 325-359. · Zbl 0863.73055
[80] Turkel, E., Gordon, D., Gordon, R. and Tsynkov, S., Compact 2D and 3D sixth order schemes for the Helmholtz equation with variable wave number, J. Comput. Phys.232 (2013) 272-287. · Zbl 1291.65273
[81] Wang, Y.et al., A parallel solver for incompressible fluid flows, Procedia Comput. Sci.18 (2013) 439-448.
[82] Ershkov, S. V. and Schennikov, V. V., Self-similar solutions to the complete system of Navier-Stokes equations for axially symmetric swirling viscous compressible gas flow, Comput. Math. Math. Phys.41 (2001) 1117-1124. · Zbl 1114.35331
[83] Kim, J. and Moin, P., Application of a fractional-step method to incompressible Naver-Stokes equations, J. Comput. Phys.59 (1985) 308-323. · Zbl 0582.76038
[84] Brevik, I. and Sund, H., The Kelvin-Helmholtz instability for surface waves in currents of uniform vorticity, Phys. Fluids A5 (1993) 1644. · Zbl 0781.76031
[85] Harding, E. C.et al., Observation of a Kelvin-Helmholtz instability in a high-energy-density plasma on the omega laser, Phys. Rev. Lett.103 (2009) 045005.
[86] Hurricane, O. A.et al., A high energy density shock driven Kelvin-Helmholtz shear layer experiment, Phys. Plasma16 (2009) 056305.
[87] Hurricane, O. A.et al., Blast-wave driven Kelvin-Helmholtz shear layers in a laser driven high-energy-density plasma, Astrophys. Space Sci.336 (2011) 139-143.
[88] Wang, C.-Y. and Chevalier, R. A., Instabilities and clumping in Type Ia supernova remnants, Astrophys. J.549 (2001) 1119-1134.
[89] Matsuoka, C., Kelvin-Helmholtz instability and roll-up, Scholarpedia9 (2014) 11821.
[90] Murray, S. D., White, S. D. M., Blondin, J. M. and Lin, D. N. C., Dynamical instabilities in two-phase media and the minimum masses of stellar systems, Astrophys. J.407 (1993) 588-596.
[91] Vietri, M.et al., The survival of interstellar clouds against Kelvin-Helmholtz instabilities, Astrophys. J.483 (1997) 262-273.
[92] Blaauwgeers, R.. Shear flow and Kelvin-Helmholtz instability in superfluids, Phys. Rev. Lett.89 (2002) 155301.
[93] Takeuchi, H.et al., Quantum Kelvin-Helmholtz instability in phase-separated two-component Bose-Einstein condensates, Phys. Rev. B81 (2010) 094517.
[94] Ding, H. and Zhang, Y., New numerical methods for the Riesz space fractional partial differential equations, Comput. Math. Appl.63 (2012) 1135-1146. · Zbl 1247.65135
[95] Owolabi, K. M., Robust and adaptive techniques for numerical simulation of nonlinear partial differential equations of fractional order, Commun. Nonlinear Sci. Numer. Simul.44 (2017) 304-317. · Zbl 1465.65108
[96] Cushman-Roisin, B. and Beckers, J., Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects (Academic Press, 2009). · Zbl 1319.86001
[97] Thorpe, S. A., Experiments on the instability of stratified shear flows: Miscible fluids, J. Fluid Mech.46 (1971) 299-319.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.