×

A hybrid approach for synchronizing between two reaction-diffusion systems of integer- and fractional-order applied on certain chemical models. (English) Zbl 1498.93696

Summary: In this study, a synchronization problem for spatio-temporal partial differential systems is addressed and researched within a subjectivist framework. In light of Lyapunov direct method and some proposed nonlinear controllers, a new scheme is established to accomplish a full synchronization between two reaction-diffusion systems of integer- and fractional-order. In particular, a novel vector-valued control law is analytically derived to attain the desired synchronization between two chemical models, namely, the Lengyel-Epstein and Gray-Scott models. To validate the obtained theoretical results, further numerical simulations are carried out in 2D and 3D configurations.

MSC:

93D99 Stability of control systems
93C20 Control/observation systems governed by partial differential equations
35K57 Reaction-diffusion equations
26A33 Fractional derivatives and integrals
Full Text: DOI

References:

[1] Luo, A. C. J., A theory for synchronization of dynamical systems, Commun. Nonlinear Sci. Numer. Simul.14 (2009) 1901-51. · Zbl 1221.37218
[2] Yang, T. and Chua, L. O., Impulsive stabilization for control and synchronization of chaotic systems: Theory and application to secure communication, IEEE Trans. Circuits Syst. I Fund. Theory Appl.44 (1997) 976-988.
[3] Cuomo, K. M., Oppenheim, A. V. and Strogatz, S. H., Synchronization of Lorenz-based chaotic circuits with applications to communications, IEEE Trans. Circuits Syst. II Analog Digit. Signal Process.40 (1993) 626-633.
[4] Jahanshahi, H., Yousefpour, A., Wei, Z., Alcaraz, R. and Bekiros, S., A financial hyperchaotic system with coexisting attractors: Dynamic investigation, entropy analysis, control and synchronization, Chaos Solitons Fractals126 (2019) 66-77. · Zbl 1451.91233
[5] Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J. M., Moroz, I., Wei, Z. and Castillo, O. A., New multi-stable fractional-order four-dimensional system with self-excited and hidden chaotic attractors: Dynamic analysis and adaptive synchronization using a novel fuzzy adaptive sliding mode control method, Appl. Soft Comput.87 (2020) 105943.
[6] Wang, S., Bekiros, S., Yousefpour, A., He, S., Castillo, O. and Jahanshahi, H., Synchronization of fractional time-delayed financial system using a novel type-2 fuzzy active control method, Chaos Solitons Fractals136 (2020) 109768. · Zbl 1489.93064
[7] Jahanshahi, H., Yousefpour, A., Munoz-Pacheco, J. M., Kacar, S., Pham, V. T. and Alsaadi, F. E., A new fractional-order hyperchaotic memristor oscillator: Dynamic analysis, robust adaptive synchronization, and its application to voice encryption, Appl. Math. Comput.383 (2020) 125310. · Zbl 1508.94058
[8] Zhou, S. S., Jahanshahi, H., Din, Q., Bekiros, S., Alcaraz, R. and Alassafi, M. O., Discrete-time macroeconomic system: Bifurcation analysis and synchronization using fuzzy-based activation feedback control, Chaos Solitons Fractals142 (2021) 110378.
[9] Yousefpour, A., Jahanshahi, H. and Gan, D., Fuzzy integral sliding mode technique for synchronization of memristive neural networks, in Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications (Elsevier, 2021), pp. 485-500.
[10] Xiong, P. Y., Jahanshahi, H., Alcaraz, R., Chu, Y. M., Gömez-Aguilar, J. F. and Alsaadi, F. E., Spectral entropy analysis and synchronization of a multi-stable fractional-order chaotic system using a novel neural network-based chattering-free sliding mode technique, Chaos Solitons Fractals144 (2021) 110576. · Zbl 1498.34175
[11] Li, J. F., Jahanshahi, H., Kacar, S., Chu, Y. M., Gömez-Aguilar, J. F. and Alotaibi, N. D., On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control, Chaos Solitons Fractals145 (2021) 110681. · Zbl 1498.94070
[12] Wang, B., Jahanshahi, H., Bekiros, S., Chu, Y. M., Gomez-Aguilar, J. F., Alsaadi, F. E. and Alassafi, M. O., Tracking control and stabilization of a fractional financial risk system using novel active finite-time fault-tolerant controls, Fractals29 (2021) 2150155-77. · Zbl 1482.91215
[13] Wang, B., Jahanshahi, H., Dutta, H., Zambrano-Serrano, E., Grebenyuk, V., Bekiros, S. and Aly, A. A., Incorporating fast and intelligent control technique into ecology: A Chebyshev neural network-based terminal sliding mode approach for fractional chaotic ecological systems, Ecol. Complex.47 (2021) 100943.
[14] Wang, H., Jahanshahi, H., Wang, K. M., Bekiros, S., Liu, J. and Aly, A. A., A Caputo-Fabrizio fractional-order model of HIV/AIDS with a treatment compartment: sensitivity analysis and optimal control strategiesEntropy23 (2021) 610.
[15] Wang, B., Jahanshahi, H., Volos, C., Bekiros, S., Yusuf, A., Agarwal, P. and Aly, A. A., Control of a symmetric chaotic supply chain system using a new fixed-time super-twisting sliding mode technique subject to control input limitations, Symmetry13 (2021) 1257.
[16] Wang, B., Jahanshahi, H., Volos, C., Bekiros, S., Khan, M. A., Agarwal, P. and Aly, A. A., A new RBF neural network-based fault-tolerant active control for fractional time-delayed systems, Electronics10 (2021) 1501.
[17] Wang, Y. L., Jahanshahi, H., Bekiros, S., Bezzina, F., Chu, Y. M. and Aly, A. A., Deep recurrent neural networks with finite-time terminal sliding mode control for a chaotic fractional-order financial system with market confidence, Chaos Solitons Fractals146 (2021) 110881. · Zbl 1498.93086
[18] Jahanshahi, H., Sajjadi, S. S., Bekiros, S. and Aly, A. A., On the development of variable-order fractional hyperchaotic economic system with a nonlinear model predictive controller, Chaos Solitons Fractals (2021), https://doi.org/10.1016/j.chaos.2021.110698.
[19] Jahanshahi, H., Smooth control of HIV/AIDS infection using a robust adaptive scheme with decoupled sliding mode supervision, Eur. Phys. J. Spec. Top.227 (2018) 707-718.
[20] Jahanshahi, H., Shahriari-Kahkeshi, M., Alcaraz, R., Wang, X., Singh, V. P. and Pham, V. T., Entropy analysis and neural network-based adaptive control of a non-equilibrium four-dimensional chaotic system with hidden attractors, Entropy21 (2019) 156.
[21] Jahanshahi, H., Rajagopal, K., Akgul, A., Sari, N. N., Namazi, H. and Jafari, S., Complete analysis and engineering applications of a megastable nonlinear oscillator, Int. J. Nonlinear Mech.107 (2018) 126-136.
[22] Ouannas, A., Odibat, Z., Shawagfeh, N., Alsaedi, A. and Ahmad, B., Universal chaos synchronization control laws for general quadratic discrete systems, Appl. Math. Model.45 (2017) 636-641. · Zbl 1446.93051
[23] Ouannas, A., Odibat, Z. and Shawagfeh, N., A new \(Q-S\) synchronization results for discrete chaotic systems, Differ. Equ. Dyn. Syst.27 (2019) 413-22. · Zbl 1432.93205
[24] Kapitaniak, T., Continuous control and synchronization in chaotic systems, Chaos Solitons Fractals6 (1995) 2372-2344.
[25] Garcia, P., Acosta, A. and Leiva, H., Synchronization conditions for master-slave reaction diffusion systems, Europhys. Lett.88 (2010) 60006.
[26] Ambrosio, B. and Aziz-Alaoui, M. A., Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo type, Comput. Math. Appl.64 (2012) 934-943. · Zbl 1356.93039
[27] Wang, L. and Zhao, H., Synchronized stability in a reaction-diffusion neural network model, Phys. Lett. A378 (2014) 3586-3599. · Zbl 1301.68215
[28] Wu, K. N., Tian, T. and Wang, L., Synchronization for a class of coupled linear partial differential systems via boundary control, J. Franklin Inst.353 (2016) 4062-4073. · Zbl 1347.93031
[29] Buceta, J. and Lindenberg, K., Patterns in reaction-diffusion systems generated by global alternation of dynamics, Physica A325 (2003) 230-242. · Zbl 1026.35052
[30] Mimura, M., Sakaguchi, H. and Matsushita, M., Reaction-diffusion modelling of bacterial colony patterns, Physica A282 (2000) 283-303.
[31] Ouannas, A., Abdelli, M., Odibat, Z., Wang, X., Pham, V. T., Grassi, G. and Alseidi, A., Synchronization control in reaction-diffusion systems: Application to Lengyel-Epstein system, Complexity24 (2019) 2832781. · Zbl 1420.35131
[32] Vaidyanathan, A., Azar, T. and Ouannas, A., Fractional Order Control and Synchronization of Chaotic Systems (Springer, 2016). · Zbl 1410.93005
[33] Mansouri, D., Abdelmalek, S. and Bendoukha, S., On the asymptotic stability of the time-fractional Lengyel-Epstein system, Comput. Math. Appl.5 (2019) 1415-1430. · Zbl 1442.92217
[34] Gafiychuk, V. and Datsko, B., Stability analysis and limit cycle in fractional system with Brusselator nonlinearities, Phys. Lett. A29 (2008) 4902-4904. · Zbl 1221.34010
[35] Mansouri, D.. Bendoukha, S., Abdelmalek, S. and Youkana, A., On the complete synchronization of a time-fractional reaction-diffusion system with the Newton-Leipnik nonlinearity, Appl. Anal.100(3) (2019) 675-694. · Zbl 1458.35458
[36] Ouannas, A., Wang, X., Pham, V. T., Grassi, G. and Huynh, V. V., Synchronization results for a class of fractional-order spatiotemporal partial differential systems based on fractional Lyapunov approach, Bound. Value Probl.2019 (2019) 74. · Zbl 1503.35271
[37] Ouannas, A., Mesdoui, F., Momani, S., Batiha, I. and Grassi, G., Synchronization of FitzHugh-Nagumo reaction-diffusion systems via one-dimensional linear control law, Arch. Control Sci.31 (2021) 333-345. · Zbl 1470.92027
[38] Albadarneh, R. B., Ouanna, A. and Batiha, I. M., Identical Chua’s circuits application using hybrid dislocated synchronization scheme, in 2021 International Conference on Information Technology (ICIT), Amman, Jordan, (2021), pp. 139-142.
[39] Ouannas, A., Khennaoui, A. A., Batiha, I. M. and Pham, V. T., Synchronization between fractional chaotic maps with different dimensions, in Fractional-Order Design: Devices, Circuits, and Systems (Academic Press, London, 2021), pp. 89-118.
[40] Talbi, I., Ouannas, A., Khennaoui, A. A., Berkane, A., batiha, I. M., Grassi, G. and Pham, V. T., Different dimensional fractional-order discrete chaotic systems based on the Caputo \(h\)-difference discrete operator: Dynamics, control, and synchronization, Adv. Differ. Equ.624 (2020) 1-15. · Zbl 1487.39013
[41] Ouannas, A. and Karouma, A., Different generalized synchronization schemes between integer-order and fractional-order chaotic systems with different dimensions, Differ. Equ. Dyn. Syst.26 (2016) 125. · Zbl 1383.37027
[42] Yang, X. Y., Liu, H. and Li, S., Synchronization of fractional-order and integer-order chaotic (hyper-chaotic) systems with different dimensions, Adv. Differ. Equ.2017 (2017) 344. · Zbl 1444.34023
[43] Ouannas, A., Khennaoui, A. A., Zehrour, O., Bendoukha, S., Grassi, G. and Pham, V. T., Synchronisation of integer-order and fractional-order discrete-time chaotic systems, Pramana - J. Phys.92 (2019) 52.
[44] Cruz, J. M., Rivera, M. and Parmananda, P., Chaotic synchronization under unidirectional coupling: Numerics and experiments, J. Phys. Chem. A32 (2009) 9051-9056.
[45] Ouannas, A., Batiha, I. M., Bekiros, S., Liu, J., Jahanshahi, H., Aly, A. A., Abdulaziz and Alghtani, H., Synchronization of the glycolysis reaction-diffusion model via linear control law, Entropy23(11) (2021) 1516.
[46] Chen, D., Zhang, R., Liu, X. and Ma, X., Fractional order Lyapunov stability theorem and its applications in synchronization of complex dynamical networks, Comm. Nonlinear Sci. Numer. Simul.19 (2016) 4105-4121. · Zbl 1440.34058
[47] Aguila-Camacho, N., Duarte-Mermoud, M. A. and Gallegos, J. A., Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul.19 (2014) 2951-2957. · Zbl 1510.34111
[48] Lengyel, I. and Epstein, I. R., A chemical approach to designing turing patterns in reaction-diffusion system, Proc. Natl. Acad. Sci. USA89 (1992) 3977-3979. · Zbl 0745.92002
[49] Gray, P. and Scott, S. K., Autocatalytic reactions in the isothermal, continuous stirred reactor, Chem. Eng. Sci.6 (1984) 1087-1097.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.