×

An effective bound for generalised Diophantine \(m\)-tuples. (English) Zbl 07828706

For any integer \(k\geq 2\), we say that \(S\) is a generalised Diophantine \(m\)-tuple with property \(D_k(n)\) if \(a_ia_j+n\) is a perfect \(k\)-th power for all \(i,j\) with \(1\leq i<j\leq m\), and set \(M_k(n):=\sup \{ |S|:\, S\) satisfies property \(D_k(n)\}\). For \(k=2\) we write \(D(n)\), \(M(n)\) instead of \(D_k(n)\), \(M_k(n)\) and omit the adjective ‘generalized’. Further, for \(L>0\) we define \(M_k(n,L):=\sup \{ |S\cap [ |n|^L,\infty )|:\, S\) satisfies property \(D_k(n)\}\).
There is a lot of work with upper bounds for \(M_k(n)\). For instance, A. Dujella [J. Reine Angew. Math. 566, 183–214 (2004; Zbl 1037.11019)] obtained \(M(n)\ll\log |n|\), R. Becker and M. R. Murty [Glas. Mat., III. Ser. 54, No. 1, 65–75 (2019; Zbl 1455.11048)] derived the more precise bound \(M(n)\leq 2.6071\log |n|+O\big(\log |n|/(\log\log |n|)^2\big)\), A. Bérczes et al. [Publ. Math. Debr. 79, No. 3–4, 325–339 (2011; Zbl 1249.11036)] proved \(M_k(n)\leq 2|n|^5+3\) for \(k\geq 5\), and lastly, for large positive \(n\) and any fixed \(k\), A. B. Dixit et al. [Proc. Am. Math. Soc. 150, No. 4, 1455–1465 (2022; Zbl 1489.11050)] improved this for \(k\geq 3\) and \(n\to\infty\) to \(M_k(n,L)\ll_{k,L} 1\) for \(L\geq 3\) and \(M_k(n) \ll _k \log n\).
In the paper under review, the authors extend this to \(n<0\) and prove the following more precise result for \(k\) not growing to quickly in terms of \(n\):
Theorem. Let \(k\geq 3\) be a positive integer. Then
(a) For \(L\geq 3\), \(M_k(n,L)\leq 2^{28}\log (2k)\log (2\log (2k))+14\).
(b) Suppose \(n\) and \(k\) vary such that as \(|n|\to\infty\) and \(k=o(\log\log |n|)\), then \(M_k(n)\leq 3\phi (k)\log |n|+O(\big( (\phi (k)^2\log |n|/\log\log |n|\big)\), where \(\phi (n)\) denotes Euler’s totient function.
To prove this result, the authors extend a gap principle due to K. Gyarmati [Acta Arith. 97, No. 1, 53–65 (2001; Zbl 0986.11016)], and prove (a) using a quantitative version of Roth’s theorem on the approximation of algebraic numbers by rationals, due to the reviewer [J. Math. Sci., New York 171, No. 6, 824–837 (2010; Zbl 1282.11085)] and subsequently (b) using P. X. Gallagher’s larger sieve [Acta Arith. 18, 77–81 (1971; Zbl 0231.10028)].

MSC:

11D45 Counting solutions of Diophantine equations
11D72 Diophantine equations in many variables
11N36 Applications of sieve methods
Full Text: DOI

References:

[1] Arkin, J., Hoggatt, V. E. Jr and Straus, E. G., ‘On Euler’s solution of a problem of Diophantus’, Fibonacci Quart.17(4) (1979), 333-339. · Zbl 0418.10021
[2] Baker, A. and Davenport, H., ‘The equations \(3{x}^2-2={y}^2\) and \(8{x}^2-7={z}^2\) ’, Q. J. Math. Oxford Ser. (2)20 (1969), 129-137. · Zbl 0177.06802
[3] Becker, R. and Murty, M. R., ‘Diophantine \(m\) -tuples with the property \(D(n)\)’, Glas. Mat. Ser. III54 (2019), 65-75. · Zbl 1455.11048
[4] Bennett, M. A., Martin, G., O’Bryant, K. and Rechnitzer, A., ‘Explicit bounds for primes in arithmetic progressions’, Illinois J. Math.62(1-4) (2018), 427-532. · Zbl 1440.11180
[5] Bérczes, A., Dujella, A., Hajdu, L. and Luca, F., ‘On the size of sets whose elements have perfect power \(n\) -shifted products’, Publ. Math. Debrecen79(3-4) (2011), 325-339. · Zbl 1249.11036
[6] Bugeaud, Y. and Dujella, A., ‘On a problem of Diophantus for higher powers’, Math. Proc. Cambridge Philos. Soc.135 (2003), 1-10. · Zbl 1042.11019
[7] Cojocaru, A. and Murty, M. R., An Introduction to Sieve Methods and Their Applications, London Mathematical Society Student Texts, 66 (Cambridge University Press, Cambridge, 2005).
[8] Dixit, A. B., Kim, S. and Murty, M. R., ‘Generalised Diophantine \(m\) -tuples’, Proc. Amer. Math. Soc.150(4) (2022), 1455-1465. · Zbl 1489.11050
[9] Dujella, A., ‘Bounds for the size of sets with the property \(D(n)\)’, Glas. Mat. Ser. III39(2) (2004), 199-205. · Zbl 1080.11027
[10] Dujella, A., ‘There are only finitely many Diophantine quintuples’, J. reine angew. Math.566 (2004), 183-214. · Zbl 1037.11019
[11] Evertse, J.-H., ‘On the quantitative subspace theorem’, J. Math. Sci. (N.Y.)171(6) (2010), 824-837. · Zbl 1282.11085
[12] Faltings, G., ‘Endlichkeitssätze für abelsche Varietäten über Zählkorpern’, Invent. Math.73 (1983), 349-366. Erratum: ibid., 75 (1984), 381. · Zbl 0588.14026
[13] Gallagher, P. X., ‘A larger sieve’, Acta Arith.18 (1971), 77-81. · Zbl 0231.10028
[14] Gyarmati, K., ‘On a problem of Diophantus’, Acta Arith.97 (2001), 53-65. · Zbl 0986.11016
[15] He, B., Togbé, A. and Ziegler, V., ‘There is no Diophantine quintuple’, Trans. Amer. Math. Soc.371(9) (2019), 6665-6709. · Zbl 1430.11044
[16] Vinogradov, I. M., Elements of Number Theory (Dover Publications, Inc., New York, 1954), translated by S. Kravetz. · Zbl 0057.28201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.