×

Quantum discord and logarithmic negativity in the generalized \(n\)-qubit Werner state. (English) Zbl 1462.81040

Summary: Quantum Discord (QD) is a measure of the total quantum non-local correlations of a quantum system. The formalism of quantum discord has been applied to various two-qubit mixed states and it has been reported that there is a non-zero quantum discord even when the states are unentangled. To this end, we have calculated the Quantum Discord for a higher than two qubit mixed state, that is, the generalized \(n\)-qubit Werner state with a bipartite split. We found that the QD saturates to a straight line with a unit slope in the thermodynamic limit. Qualitative studies of entanglement between the two subsystems using logarithmic negativity revealed that the entanglement content between them increases non-uniformly with the number of qubits leading to its saturation. We have proved the above claims both analytically and numerically.

MSC:

81P43 Quantum discord
81P42 Entanglement measures, concurrencies, separability criteria
81P40 Quantum coherence, entanglement, quantum correlations
81P16 Quantum state spaces, operational and probabilistic concepts

References:

[1] Horodecki, R.; Horodecki, P.; Horodecki, M.; Horodecki, K., Quantum entanglement, Rev. Mod. Phys., 81, 865 (2009) · Zbl 1205.81012 · doi:10.1103/RevModPhys.81.865
[2] Knill, E.; Laflamme, R., Power of one bit of quantum information, Phys. Rev. Lett., 81, 5672 (1998) · doi:10.1103/PhysRevLett.81.5672
[3] Bennett, CH; DiVincenzo, DP; Fuchs, CA; Mor, T.; Rains, E.; Shor, PW; Smolin, JA; Wootters, WK, Quantum nonlocality without entanglement, Phys. Rev. A, 59, 1070 (1999) · doi:10.1103/PhysRevA.59.1070
[4] Ollivier, H.; Zurek, WH, Quantum discord: a measure of the quantumness of correlations, Phys. Rev. Lett., 88, 017901 (2001) · Zbl 1255.81071 · doi:10.1103/PhysRevLett.88.017901
[5] Henderson, L.; Vedral, V., Journal of physics a: mathematical and general classical, quantum and total correlations, J. Phys. A: Math. Gen., 34, 6899 (2001) · Zbl 0988.81023 · doi:10.1088/0305-4470/34/35/315
[6] Siewert, J.; Eltschka, C., Entanglement of three-qubit Greenberger-Horne-Zeilinger-Symmetric states, Phys. Rev. Lett., 108, 020502 (2012) · doi:10.1103/PhysRevLett.108.230502
[7] Dür, W.; Cirac, JI, Classification of multiqubit mixed states: Separability and distillability properties, Phys. Rev. A, 61, 042314 (2000) · doi:10.1103/PhysRevA.61.042314
[8] Werner, RF, Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model, Phys. Rev. A, 40, 4277 (1989) · Zbl 1371.81145 · doi:10.1103/PhysRevA.40.4277
[9] Greenberger, D.M., Horne, M., Zeilinger, A.: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe. In: Kafatos, M. (ed.) . Kluwer, Dordrecht (1989)
[10] Plenio, MB, Logarithmic negativity: A full entanglement monotone that is not convex, Phys. Rev. Lett., 95, 090503 (2005) · doi:10.1103/PhysRevLett.95.090503
[11] Peres, A., Separability criterion for density matrices, Phys. Rev. Lett., 77, 1413 (1996) · Zbl 0947.81003 · doi:10.1103/PhysRevLett.77.1413
[12] Wootters, WK, Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245 (1998) · Zbl 1368.81047 · doi:10.1103/PhysRevLett.80.2245
[13] Barkataki, P.; Ramkarthik, MS, Generating two-qubit Werner states using superpositions of dimer and random states in Hilbert space, Int. J. Theor. Phys., 59, 2, 550-561 (2020) · Zbl 1440.81017 · doi:10.1007/s10773-019-04348-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.