×

Generalizations of the higher dimensional Suita conjecture and its relation with a problem of Wiegerinck. (English) Zbl 1473.32002

Let \(H= \sum_{|\alpha|=k} a_\alpha z^\alpha\) be a homogeneous polynomial of degree \(k\) and define the operator \(P_H\) as \(P_H (f) := \sum_{|\alpha|=k} a_\alpha D^\alpha f\). Then, for a given domain \(D\subset \mathbb C^n\), set \[ K^H_D (z):= \sup \big\{ |P_H (f) (z)|^2 \colon f^{(j)}(z)=0, j=0,\dots,k-1, f \in L^2_h (D), \|f\|_{L^2(D)} =1 \big\}, \] where \( L^2_h (D)\) denotes the space of holomorphic functions in \(L^2 (D)\). For \(H=1\), one recovers the definition of the Bergman kernel (restricted to the diagonal) \(K_D\).
Assume that \(0\in D\) and denote by \(G\) the (pluri)complex Green function of (the complement of) \(D\) with pole at \(0\). The Azukawa indicatrix (at \(0\)) is defined as \[ I_D(0) := \{ X \in \mathbb C^n \colon \limsup_{\lambda \to 0} G (\lambda X ) - \log |\lambda| <0 \}. \]
The following is the main result of the paper.
Theorem. Let \(0\in D\subset \mathbb C^n\) be a pseudoconvex domain and \(H\) be a homogeneous polynomial of degree \(k\). Then the function \[ [-\infty,0]\ni a \mapsto K^H_{D_a} (0) \] is non-decreasing, where \(D_a := e^{-a} \{G <a\}\) and \(D_{-\infty}:= I_D (0)\). In particular, \(K^H_{I_D(0)} (0) \leq K_D^H (0)\). This gives a generalization of the (higher-dimensional counterpart of the) Suita conjecture. The proof follows the approach developed in [the first author, Lect. Notes Math. 2116, 53–63 (2014; Zbl 1321.32003); Bull. Math. Sci. 4, No. 3, 433–480 (2014; Zbl 1310.32004); the authors, New York J. Math. 21, 151–161 (2015; Zbl 1317.32024)]. The authors deduce some consequences on the dimension of the Bergman space, which lead to a partial solution to a problem of J. J. O. O. Wiegerinck [Math. Z. 187, 559–562 (1984; Zbl 0534.32001)]. They also introduce other sufficient conditions that guarantee a positive solution to this problem. Finally, they study the regularity of the function given by the volume of the Azukawa indicatrix.

MSC:

32A36 Bergman spaces of functions in several complex variables
32F45 Invariant metrics and pseudodistances in several complex variables
32U35 Plurisubharmonic extremal functions, pluricomplex Green functions

References:

[1] Balakumar, GP; Borah, D.; Mahajan, P.; Verma, K., Remarks on the higher dimensional Suita conjecture, Proc. Am. Math. Soc., 147, 3401-3411 (2019) · Zbl 1435.32011
[2] Balakumar, G.P., Borah, D., Mahajan, P., Verma, K.: Further remarks on the higher dimensional Suita conjecture. arXiv:1812.03010 · Zbl 1435.32011
[3] Berndtsson, B., Prekopa’s theorem and Kiselman’s minimum principle for plurisubharmonic functions, Math. Ann., 312, 4, 785-792 (1998) · Zbl 0938.32021
[4] Błocki, Z.; Klartag, B.; Milman, E., A lower bound for the Bergman kernel and the Bourgain-Milman inequality, Geometric Aspects of Functional Analysis, Israel Seminar (GAFA) 2011-2013. Lecture Notes in Mathematics, 53-63 (2014), New York: Springer, New York · Zbl 1321.32003
[5] Błocki, Z., Cauchy-Riemann meet Monge-Ampére, Bull. Math. Sci., 4, 433-480 (2014) · Zbl 1310.32004
[6] Błocki, Z.; Feehan, PMN; Song, J.; Weinkove, B.; Wentworth, RA, Bergman kernel and pluripotential theory, Analysis, Complex Geometry, and Mathematical Physics: in Honor of Duong H. Phong. Contemporary Mathematics, 1-10 (2015), Providence: American Mathematical Society, Providence · Zbl 1337.32009
[7] Błocki, Z.; Zwonek, W., Estimates for the Bergman kernel and the multidimensional Suita conjecture, N. Y. J. Math., 21, 151-161 (2015) · Zbl 1317.32024
[8] Błocki, Z.; Zwonek, W., Suita conjecture for some convex ellipsoids in \({\mathbb{C}}^2\), Exp. Math., 25, 1, 8-16 (2016) · Zbl 1341.32010
[9] Błocki, Z.; Zwonek, W., One dimensional estimates for the Bergman kernel and logarithmic capacity, Proc. Am. Math. Soc., 146, 2489-2495 (2018) · Zbl 1398.30038
[10] Diederich, K.; Fornaess, JF; Wold, EF, Exposing Points on the Boundary of a Strictly Pseudoconvex or a Locally Convexifiable Domain of Finite \(1\)-Type, J. Geom. Anal., 24, 4, 2124-2134 (2014) · Zbl 1312.32006
[11] Donnelly, H.; Fefferman, C., \(L^2\)-cohomology and index theorem for the Bergman metric, Ann. Math., 118, 593-618 (1983) · Zbl 0532.58027
[12] Jarnicki, M.; Pflug, P., Remarks on the pluricomplex Green function Indiana Univ, Math. J., 44, 2, 535-543 (1995) · Zbl 0848.31007
[13] Jarnicki, M.; Pflug, P., Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics (2000), Berlin: Walter de Gruyter & Co., Berlin · Zbl 0976.32007
[14] Jucha, P., A remark on the dimension of the Bergman space of some Hartogs domains, J. Geom. Anal., 22, 23-37 (2012) · Zbl 1258.32002
[15] Kim, K.-T., Zhang, L.: On the uniform squeezing property and the squeezing function. arXiv:1306.2390
[16] Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109, 427-474 (1981) · Zbl 0492.32025
[17] Nivoche, S., The pluricomplex green function, capacitative notions, and approximation problems in \({\mathbb{C}}^n\), Indiana Univ. Math. J., 44, 2, 489-510 (1995) · Zbl 0846.31008
[18] Pflug, P.; Zwonek, W., \(L_h^2\)-Functions in unbounded balanced domains, J. Geom. Anal., 27, 3, 2118-2130 (2017) · Zbl 1380.32013
[19] Prekopa, A., Logarithmic Concave Measures and Related Topics. Stochastic Programming (Proc. Internat. Conf., Univ. Oxford, Oxford), 63-82 (1974), London: Academic Press, London · Zbl 0459.90056
[20] Wiegerinck, J., Domains with finite-dimensional Bergman space, Math. Z., 187, 4, 559-562 (1984) · Zbl 0534.32001
[21] Zwonek, W., Regularity properties of the Azukawa metric, J. Math. Soc. Jpn., 52, 4, 899-914 (2000) · Zbl 0986.32016
[22] Zwonek, W., Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math., 388, 103 (2000) · Zbl 0965.32004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.