×

A lower bound for the Bergman kernel and the Bourgain-Milman inequality. (English) Zbl 1321.32003

Klartag, Bo’az (ed.) et al., Geometric aspects of functional analysis. Proceedings of the Israel seminar (GAFA) 2011–2013. Cham: Springer (ISBN 978-3-319-09476-2/pbk; 978-3-319-09477-9/ebook). Lecture Notes in Mathematics 2116, 53-63 (2014).
The main result of the paper under review is the following. If \(\Omega\) is a pseudoconvex domain in \(\mathbb C^n\), then for \(w\in\Omega\) and \(a\geq0\) we have \[ K_{\Omega}(w)\geq\frac{1}{e^{2na}\lambda_{2n}(\{G_{\Omega,w}<-a\})}, \] where \[ K_{\Omega}(w):=\sup\bigg\{|f(w)|^2:f\in\mathcal O(\Omega),\;\int_{\Omega}|f|^2\,d\lambda_{2n}\leq1\bigg\} \] is the Bergman kernel and \[ G_{\Omega,w}:=\sup\Big\{u\in\mathcal P\mathcal S\mathcal H(\Omega):\limsup_{z\to w}(u(z)-\log|z-w|<\infty),\;u<0\Big\} \] is the pluricomplex Green function.
The above estimate is nontrivial already for \(n=1\), since it gives the inequality conjectured by N. Suita in [Arch. Ration. Mech. Anal. 46, 212–217 (1972; Zbl 0245.30014)] and proved by Z. Błocki in [Invent. Math. 193, No. 1, 149–158 (2013; Zbl 1282.32014)].
The above estimate together with Lempert’s theory gives the following result. If \(\Omega\) is a convex domain in \(\mathbb C^n\), then \[ K_{\Omega}(w)\geq\frac{1}{\lambda_{2n}(I_{\Omega}(w))},\quad w\in\Omega, \] where \[ I_{\Omega}(w):=\big\{\varphi'(0):\varphi\in\mathcal O(\mathbb D,\Omega),\;\varphi(0)=w\big\} \] is the Kobayashi indicatrix (here \(\mathbb D\) denotes the unit disc). One can use the above lower bound to simplify F. Nazarov’s approach in [Lect. Notes Math. 2050, 335–343 (2012; Zbl 1291.52014)] to the Bourgain-Milman inequality.
For the entire collection see [Zbl 1300.46002].

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
52A40 Inequalities and extremum problems involving convexity in convex geometry
Full Text: DOI

References:

[1] B. Berndtsson, Weighted estimates for the \(\overline{\partial } \) -equation, in Complex Analysis and Geometry, Columbus, Ohio, 1999. Ohio State Univ. Math. Res. Inst. Publ., vol. 9 (Walter de Gruyter, Berlin, 2001), pp. 43-57 · Zbl 1011.32024
[2] Błocki, Z., A note on the Hörmander, Donnelly-Fefferman, and Berndtsson L^2-estimates for the \(\overline{\partial } \) -operator, Ann. Pol. Math., 84, 87-91 (2004) · Zbl 1108.32019 · doi:10.4064/ap84-1-9
[3] Błocki, Z., The Bergman metric and the pluricomplex Green function, Trans. Am. Math. Soc., 357, 2613-2625 (2005) · Zbl 1071.32008 · doi:10.1090/S0002-9947-05-03738-4
[4] Z. Błocki, Estimates for \(\bar{\partial }\) and optimal constants, in Complex Geometry, Abel Symposium 2013, Springer (to appear) · Zbl 1337.32052
[5] Błocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., 193, 149-158 (2013) · Zbl 1282.32014 · doi:10.1007/s00222-012-0423-2
[6] Bourgain, J.; Milman, V., New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^n \), Invent. Math., 88, 319-340 (1987) · Zbl 0617.52006 · doi:10.1007/BF01388911
[7] Demailly, J.-P., Mesures de Monge-Ampère et mesures plurisousharmoniques, Math. Z., 194, 519-564 (1987) · Zbl 0595.32006 · doi:10.1007/BF01161920
[8] Donnelly, H.; Fefferman, C., L^2-cohomology and index theorem for the Bergman metric, Ann. Math., 118, 593-618 (1983) · Zbl 0532.58027 · doi:10.2307/2006983
[9] Edigarian, A., On the product property of the pluricomplex Green function, Proc. Am. Math. Soc., 125, 2855-2858 (1997) · Zbl 0884.31005 · doi:10.1090/S0002-9939-97-03951-8
[10] Herbort, G., The Bergman metric on hyperconvex domains, Math. Z., 232, 183-196 (1999) · Zbl 0933.32048 · doi:10.1007/PL00004754
[11] Hörmander, L., L^2 estimates and existence theorems for the \(\bar{\partial }\) operator, Acta Math., 113, 89-152 (1965) · Zbl 0158.11002 · doi:10.1007/BF02391775
[12] Hsin, C.-I., The Bergman kernel on tube domains, Rev. Un. Mat. Argentina, 46, 23-29 (2005) · Zbl 1099.32004
[13] Jarnicki, M.; Pflug, P., Invariant pseudodistances and pseudometrics - completeness and product property, Ann. Polon. Math., 55, 169-189 (1991) · Zbl 0756.32016
[14] Kuperberg, G., From the Mahler conjecture to Gauss linking integrals, Geom. Funct. Anal., 18, 870-892 (2008) · Zbl 1169.52004 · doi:10.1007/s00039-008-0669-4
[15] Lempert, L., La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France, 109, 427-474 (1981) · Zbl 0492.32025
[16] Lempert, L., Holomorphic invariants, normal forms, and the moduli space of convex domains, Ann. Math., 128, 43-78 (1988) · Zbl 0658.32015 · doi:10.2307/1971462
[17] F. Nazarov, The Hörmander proof of the Bourgain-Milman theorem, in Geometric Aspects of Functional Analysis, Israel Seminar 2006-2010, ed. by B. Klartag, S. Mendelson, V.D. Milman. Lecture Notes in Mathematics, vol. 2050 (Springer, Berlin, 2012), pp. 335-343 · Zbl 1291.52014
[18] Rothaus, O. S., Some properties of Laplace transforms of measures, Trans. Am. Math. Soc., 131, 163-169 (1968) · Zbl 0159.17501 · doi:10.1090/S0002-9947-1968-0227466-0
[19] Suita, N., Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal., 46, 212-217 (1972) · Zbl 0245.30014 · doi:10.1007/BF00252460
[20] S. Zając, Complex geodesics in convex tube domains, Ann. Scuola Norm. Sup. Pisa (to appear) · Zbl 1358.32012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.