×

New analytical method for dynamic response of thermoelastic damping in simply supported generalized piezothermoelastic nanobeam. (English) Zbl 07813181

Summary: The present paper deals with the application of one-dimensional piezoelectric materials in particular piezo-thermo-elastic nanobeam in the context of generalized piezothermoelastic theory. The ends of the nanobeam are considered to be simply supported and at a constant temperature. The mathematical model so formed is solved to obtain the non-dimensional expressions for lateral deflection, electric potential, thermal moment, thermoelastic damping, and frequency shift. Effect of frequency on the lateral deflection, electric potential, thermal moment with generalized piezothermoelastic theory are represented graphically using the MATLAB software. Comparisons are made with different theories of thermoelasticity.
© 2021 Wiley-VCH GmbH

MSC:

74Fxx Coupling of solid mechanics with other effects
74Hxx Dynamical problems in solid mechanics
74Kxx Thin bodies, structures

Software:

Matlab
Full Text: DOI

References:

[1] Ieşan, D.: Plane strain problems in piezoelectricity. Int. J. Eng. Sci.25(11-12), 1511-1523 (1987) · Zbl 0645.73017
[2] Liang, X., Shen, S.: Effect of electrostatic force on a piezoelectric nanobeam. Smart Mater. Struct.21(1), 15001 (2012)
[3] Eom, C.B., Trolier‐McKinstry, S.: Thin‐film piezoelectric MEMS. MRS Bull.37(11), 1007-1017 (2012)
[4] Vahdat, A.S., Rezazadeh, G., Ahmadi, G.: Thermoelastic damping in a micro‐beam resonator tunable with piezoelectric layers. Acta Mech. Solida Sin.25(1), 73-81 (2012)
[5] Sadek, I., Abukhaled, M.: Optimal control of thermoelastic beam vibrations by piezoelectric actuation. J. Control Theory Appl.11(3), 463-467 (2013)
[6] Kumar, R., Sharma, P.: Modelling of piezothermoelastic beam with fractional order derivative. Curved Layer. Struct.3(1) (2016), https://doi.org/10.1515/cls‐2016‐0009 · doi:10.1515/cls‐2016‐0009
[7] Vlase, S., Năstac, C., Marin, M., Mihălcică, M.: A method for the study of the vibration of mechanical bars systems with symmetries. 60(Iv), 539-544 (2017)
[8] Li, D., He, T.: Investigation of generalized piezoelectric‐thermoelastic problem with nonlocal effect and temperature‐dependent properties. Heliyon. 4(10), e00860 (2018)
[9] Marin, M., Öchsner, A.: An initial boundary value problem for modeling a piezoelectric dipolar body. Contin. Mech. Thermodyn.30(2), 267‐278 (2018) · Zbl 1392.74040
[10] Kumar, R., Sharma, N., Lata, P., Marin, M.: Reflection of plane waves at micropolar piezothermoelastic half‐space. Comput. Methods Sci. Technol.24(2), 113-124 (2018)
[11] Zenkour, A.M.: Refined two‐temperature multi‐phase‐lags theory for thermomechanical response of microbeams using the modified couple stress analysis. Acta Mech.229(9), 3671-3692 (2018) · Zbl 1398.74078
[12] Sharma, J.N., Kaur, R.: Transverse vibrations in thermoelastic‐diffusive thin micro‐beam resonators. J. Therm. Stress.37(11), 1265-1285 (2014)
[13] Abouelregal, A.E., Zenkour, A.M.: Thermoelastic response of nanobeam resonators subjected to exponential decaying time varying load. J. Theor. Appl. Mech.55(3), 937-948 (2017)
[14] Abd‐Elaziz, E.M., Othman, M.I.A.: Effect of Thomson and thermal loading due to laser pulse in a magneto‐thermo‐elastic porous medium with energy dissipation. ZAMM J. Appl. Math. Mech. Zeitschrift für Angew. Math. und Mech.99(8) (2019), https://doi.org/10.1002/zamm.201900079 · Zbl 1538.35364 · doi:10.1002/zamm.201900079
[15] Wu, J.X., Li, X.F.: Effect of an elastic substrate on buckling of free‐standing nanocolumns. ZAMM‐Z. Angew. Math. Mech.95(4), 396-405 (2015) · Zbl 1322.74021
[16] Reddy, J.N., Cheng, Z.Q.: Deformations of piezothermoelastic laminates with internal electrodes. ZAMM‐Z. Angew. Math. Mech.81(5) (2001), https://doi.org/10.1002/1521‐4001(200105) · Zbl 1031.74025 · doi:10.1002/1521‐4001(200105
[17] Zhang, L., Arain, M.B., Bhatti, M.M., Zeeshan, A., Hal‐Sulami, H.: Effects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids. Appl. Math. Mech.41(4), 637-654 (2020) · Zbl 1457.76215
[18] Singh, A., Das, S., Craciun, E.M.: Effect of thermomechanical loading on an edge crack of finite length in an infinite orthotropic strip. Mech. Compos. Mater.55(3), 285-296 (2019)
[19] Craciun, E.M., Baesu, E., Soós, E.: General solution in terms of complex potentials for incremental antiplane states in prestressed and prepolarized piezoelectric crystals: application to Mode III fracture propagation. IMA J. Appl. Math.70(1), 39-52 (2004) · Zbl 1073.74025
[20] Sharma, K., Marin, M.: Reflection and transmission of waves from imperfect boundary between two heat conducting micropolar thermoelastic solids. Analele Univ. “Ovidius” Constanta ‐ Ser. Mat.22(2), 151-176 (2014) · Zbl 1313.74014
[21] Khisaeva, Z.F., Ostoja‐Starzewski, M.: Thermoelastic damping in nanomechanical resonators with finite wave speeds. J. Therm. Stress.29(3), 201-216 (2006)
[22] Singh, A., Das, S., Altenbach, H., Craciun, E.M.: Semi‐infinite moving crack in an orthotropic strip sandwiched between two identical half planes. ZAMM ‐ J. Appl. Math. Mech. /Zeitschrift für Angew. Math. und Mech.100(2) (2020), https://doi.org/10.1002/zamm.201900202 · Zbl 07794852 · doi:10.1002/zamm.201900202
[23] Sharma, J.N., Grover, D.: Thermoelastic vibrations in micro‐/nano‐scale beam resonators with voids. J. Sound Vib.330(12), 2964-2977 (2011)
[24] Vlase, S., Marin, M., Öchsner, A., Scutaru, M.L.: Motion equation for a flexible one‐dimensional element used in the dynamical analysis of a multibody system. Contin. Mech. Thermodyn.31(3), 715-724 (2019) · Zbl 1442.70006
[25] Groza, G., Mitu, A.M., Pop, N., Sireteanu, T.: Transverse vibrations analysis of a beam with degrading hysteretic behavior by using Euler‐Bernoulli beam model. Analele Univ. “Ovidius” Constanta ‐ Ser. Mat.26(1), 125-139 (2018) · Zbl 1438.74074
[26] Nicolescu, A.E., Bobe, A.: Weak solution of longitudinal waves in carbon nanotubes. Continuum Mech. Thermodyn. (2021), https://doi.org/10.1007/s00161‐021‐01001‐7 · Zbl 1521.74114 · doi:10.1007/s00161‐021‐01001‐7
[27] Golewski, G.L.: A novel specific requirements for materials used in reinforced concrete composites subjected to dynamic loads. Compos. Struct.223, 110939 (2019)
[28] Golewski, G.L.: A new principles for implementation and operation of foundations for machines: a review of recent advances. Struct. Eng. Mech.7(3), 317-327 (2019)
[29] Golewski, G.L.: The beneficial effect of the addition of fly ash on reduction of the size of microcracks in the ITZ of concrete composites under dynamic loading. Energies. 14(3), 668 (2021)
[30] Abbas, I.A.: Free vibrations of nanoscale beam under two‐temperature Green and Naghdi model. Int. J. Acoust. Vib.23(No 3, September 2018), 289-293 (2018)
[31] Lata, P., Kaur, I.: A study of transversely isotropic thermoelastic beam with Green‐Naghdi type‐II and type‐III theories of thermoelasticity. Appl. Appl. Math. An Int. J.14(1), 270-283 (2019) · Zbl 1416.74017
[32] Kaur, I., Lata, P.: Rayleigh wave propagation in transversely isotropic magneto‐thermoelastic medium with three‐phase‐lag heat transfer and diffusion. Int. J. Mech. Mater. Eng.14(1) (2019), https://doi.org/10.1186/s40712‐019‐0108‐3 · doi:10.1186/s40712‐019‐0108‐3
[33] Kaur, I., Lata, P.: Stoneley wave propagation in transversely isotropic thermoelastic medium with two temperature and rotation. GEM Int. J. Geomathematics.11(1), 1-17 (2020) · Zbl 1435.35213
[34] Kaur, I., Lata, P., Singh, K.: Effect of Hall current in transversely isotropic magneto‐thermoelastic rotating medium with fractional‐order generalized heat transfer due to ramp‐type heat. Indian J. Phys. (2020), https://doi.org/10.1007/s12648‐020‐01718‐2 · doi:10.1007/s12648‐020‐01718‐2
[35] Kaur, I., Lata, P.: Effect of hall current on propagation of plane wave in transversely isotropic thermoelastic medium with two temperature and fractional order heat transfer. SN Appl. Sci.1(8) (2019), https://doi.org/10.1007/s42452‐019‐0942‐1 · doi:10.1007/s42452‐019‐0942‐1
[36] Kaur, I., Lata, P.: Transversely isotropic thermoelastic thin circular plate with constant and periodically varying load and heat source. Int. J. Mech. Mater. Eng.14(1) (2019), https://doi.org/10.1186/s40712‐019‐0107‐4 · doi:10.1186/s40712‐019‐0107‐4
[37] Bhatti, M.M., Michaelides, E.E.: Study of Arrhenius activation energy on the thermo‐bioconvection nanofluid flow over a Riga plate. J. Therm. Anal. Calorim. (2020), https://doi.org/10.1007/s10973‐020‐09492‐3 · doi:10.1007/s10973‐020‐09492‐3
[38] Youssef, H.M., El‐Bary, A.A.: Theory of hyperbolic two‐temperature generalized thermoelasticity. Mater. Phys. Mech.40(2) (2018), doi: 10.18720/MPM.4022018_4
[39] Othman, M.I.A.; Atwa, S.Y.; Hasona, W.M.; Ahmed, E.A.A.: Propagation of plane waves in generalized piezo‐thermoelastic medium: comparison of different theories. Int. J. Innov. Res. Sci. Eng. Technol.4(4), 2292-2300 (2015)
[40] Rao, S.S., Vibration of Continuous Systems. New Jersey: John Wiley & Sons (2007)
[41] Sharma, J.N., Kaur, R.: Modeling and analysis of forced vibrations in transversely isotropic thermoelastic thin beams. Meccanica50(1), 189-205 (2015) · Zbl 1329.74158
[42] Lifshitz, R., Roukes, M.L.: Thermoelastic damping in micro‐ and nanomechanical systems. Phys. Rev. B.61(8), 5600-5609 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.