×

On a non-linear size-structured population model. (English) Zbl 1440.35332

Summary: This paper deals with a size-structured population model consisting of a quasi-linear first-order partial differential equation with nonlinear boundary condition. The existence and uniqueness of solutions are firstly obtained by transforming the system into an equivalent integral equation such that the corresponding integral operator forms a contraction. Furthermore, the existence of global attractor is established by proving the asymptotic smoothness and eventual compactness of the nonlinear semigroup associated with the solutions. Finally, we discuss the uniform persistence and existence of compact attractor contained inside the uniformly persistent set.

MSC:

35Q92 PDEs in connection with biology, chemistry and other natural sciences
35L03 Initial value problems for first-order hyperbolic equations
35B41 Attractors
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
35B40 Asymptotic behavior of solutions to PDEs
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] M. Adimy; F. Crauste; M. Hbid; R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., 70, 1611-1633 (2010) · Zbl 1206.34102 · doi:10.1137/080742713
[2] M. Adimy; F. Crauste; M. Hbid; R. Qesmi, Stability and Hopf bifurcation for a cell population model with state-dependent delay, SIAM J. Appl. Math., 70, 1611-1633 (2010) · Zbl 0719.92017 · doi:10.1137/080742713
[3] W. Aiello; H. Freedman, A time-delay model of a single species growth with stage structure, Math. Biosci., 101, 139-153 (1990) · Zbl 0760.92018 · doi:10.1016/0025-5564(90)90019-U
[4] W. Aiello; H. Freedman; J. Wu, Analysis of a model representing stage-structured population growth with state-dependent time delay, SIAM J. Appl. Math., 52, 855-869 (1992) · Zbl 0938.92028 · doi:10.1137/0152048
[5] M. Banerjee; Y. Takeuchi, Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models, J. Theor. Biol., 412, 154-171 (2017) · Zbl 1368.92134 · doi:10.1016/j.jtbi.2016.10.016
[6] O. Arino; M. Hbid; R. Bravo de la Parra, A mathematical model of growth of population of fish in the larval stage: Density-dependence effects, Math. Biosci., 150, 1-20 (1998) · Zbl 0938.92028 · doi:10.1016/S0025-5564(98)00008-X
[7] M. Banerjee; Y. Takeuchi, Maturation delay for the predators can enhance stable coexistence for a class of prey-predator models, J. Theor. Biol., 412, 154-171 (2017) · Zbl 1347.92080 · doi:10.1016/j.jtbi.2016.10.016
[8] N. Blakley, Life history signigicance of size-triggered metamorphosis in milkweed bugs (Oncopeltus), Ecology, 62, 57-64 (1981) · doi:10.1073/pnas.1106556108
[9] C. Browne; S. Pilyugin, Global analysis of age-structured within-host virus model, Discrete Contin. Dyn. Syst. Ser. B, 18, 1999-2017 (2013) · Zbl 1382.34089 · doi:10.3934/dcdsb.2013.18.1999
[10] V. Callier; H. Nijhout, Control of body size by oxygen supply reveals size-dependent and size-independent mechanisms of molting and metamorphosis, Proc. Natl Acad. Sci. USA, 108, 14664-14669 (2011) · Zbl 1367.34099 · doi:10.1073/pnas.1106556108
[11] J. Fang; S. Gourley; Y. Lou, Stage-structured models of intra-and inter-specific competition within age classes, J. Differ. Equations, 260, 1918-1953 (2016) · Zbl 0642.58013 · doi:10.1016/j.jde.2015.09.048
[12] S. Gourley; R. Liu; Y. Lou, Intra-specific competition and insect larval development: A model with time-dependent delay, P. Roy. Soc. Edinb. A., 147A, 353-369 (2017) · Zbl 0692.34053 · doi:10.1017/S0308210516000159
[13] J. Hale, Asymptotic Behavior of Dissipative Systems, Math. Surv. Monogr., 25, Am. Math. Soc., Providence, RI, 1988. · Zbl 0642.58013
[14] J. Hale; P. Waltman, Persistence in infinite-dimensional systens, SIAM J. Math. Anal., 20, 388-395 (1989) · Zbl 1369.35099 · doi:10.1137/0520025
[15] M. Hardstone; T. Andreadis, Weak larval competition between the invasive mosquito Aedes japonicus (Diptera: Culicidae) and tree resident containerinhaviting mosquitoes in the lavoratory, J. Med. Entomol, 49, 277-285 (2012) · Zbl 1330.35472 · doi:10.1016/j.nonrwa.2015.01.001
[16] K. Liu; Y. Lou; J. Wu, Analysis of an age structured model for tick populations subject to seasonal effects, J. Differ. Equations, 263, 2078-2112 (2017) · Zbl 1232.92057 · doi:10.1016/j.jde.2017.03.038
[17] L. Liu; J. Wang; X. Liu, Global stability of an SEIR epidemic model with age-dependent latency and relapse, Nonlinear Analysis: RWA, 24, 18-35 (2015) · Zbl 1311.35030 · doi:10.1016/j.nonrwa.2015.01.001
[18] Y. Lou; X. Zhao, A reaction-diffusion malaria model with incubation period in the vector population, J. Math. Biol., 62, 543-568 (2011) · Zbl 1365.92092 · doi:10.1007/s00285-010-0346-8
[19] Y. Lv; R. Yuan, Global stability and wavefronts in a cooperation model with state-dependent time delay, J. Math. Anal. Appl., 415, 543-573 (2014) · Zbl 1334.35376 · doi:10.1016/j.jmaa.2014.01.086
[20] Y. Lv; R. Yuan; Y. He, Wavefronts of a stage structured model with state-dependent delay, Discret. Contin. Dyn. Syst. Ser. A, 35, 4931-4954 (2015) · Zbl 1377.92071 · doi:10.3934/dcds.2015.35.4931
[21] Y. Lv; R. Yuan; Y. Pei, Smoothness of semiflows for parabolic partial differential equations with state-dependent delay, J. Differ. Equations, 260, 6201-6231 (2016) · Zbl 1383.92070 · doi:10.1016/j.jde.2015.12.037
[22] Y. Lv; R. Yuan; Y. Pei; T. Li, Global stability of a competitive model with state-dependent delay, J. Dyn. Diff. Equat., 29, 501-521 (2017) · Zbl 1415.35033 · doi:10.1007/s10884-015-9475-5
[23] Y. Lv; Y. Pei; R. Yuan, Modeling and analysis of a predator-prey model with state-dependent delay, Int. J. Biomath., 11, 1-22 (2018) · Zbl 1128.37016 · doi:10.1142/S1793524518500262
[24] Y. Lv; Y. Pei; R. Yuan, Principle of linearized stability and instability for parabolic partial differential equations with state-dependent delay, J. Differ. Equations, 267, 1671-1704 (2019) · Zbl 1208.34126 · doi:10.1016/j.jde.2019.02.014
[25] P. Magal; X. Zhao, Global attractors and steady states for uniformly persistent dynamical systems, SIAM J. Math. Anal., 37, 251-275 (2005) · Zbl 1128.37016 · doi:10.1137/S0036141003439173
[26] P. Magal; C. McCluskey; G. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89, 1109-1140 (2010) · Zbl 1208.34126 · doi:10.1080/00036810903208122
[27] J. Mahaffy; J. Bélair; M. Mackey, Hematoppietic model with moving boundary condition and state dependent delay: Applications, J. Theor. Biol., 190, 135-146 (1998) · doi:10.2307/2389318
[28] T. Malthus, An Essay on the Principle of Population, Oxford World’s Classic reprint, 1798. · JFM 52.0542.04 · doi:10.1017/S0013091500034428
[29] E. McCauley; W. Murdoch; R. Nisbet, Growth, reproduction, and mortality of daphnia pulex leydig: Life at low food, Functional Ecology, 4, 505-514 (1990) · doi:10.2307/2389318
[30] A. McKendrick, Applications of mathematics to medical problems, Proc. Edinb. Math. Soc., 44, 98-130 (1926) · Zbl 0524.92019 · doi:10.1017/S0013091500034428
[31] K. Noor-E Jannat; B. Roitverg, Effects of larval density and feeding rates on larval life history traits in Anophelets gambiae s.s (Diptera: Culicidae), J. Vector Ecology, 38, 120-126 (2013) · Zbl 0797.92024 · doi:10.1016/0025-5564(93)90006-V
[32] H. Smith, Hopf bifurcation in a system of functional equations modeling the spread of an infectious disease, SIAM J. Appl. Math., 43, 370-385 (1983) · Zbl 0794.34061 · doi:10.1137/0143025
[33] H. Smith, Reduction of structured population models to threshold-type delay equations and functional differential equations: A case study, Math. Biosci., 113, 1-23 (1993) · Zbl 0810.92022 · doi:10.1016/0025-5564(93)90006-V
[34] H. Smith, A structured population model and a related functional differential equation: Global attractors and uniform persistence, J. Dyn. Diff. Equat., 6, 71-99 (1994) · Zbl 0734.34059 · doi:10.1007/BF02219189
[35] H. Smith, Existence and uniqueness of global solutions for a size-structured model of an insect population with variable instar duration, Rocky Mt. J. Math., 24, 311-334 (1994) · Zbl 0810.92022 · doi:10.1216/rmjm/1181072468
[36] H. Thieme, Semifows generated by Lipschitz perturbations of non-densely defined operators, Differ. Integral Equ., 3, 1035-1066 (1990) · Zbl 0734.34059
[37] P. Verhulst, Notice sur la loi que la population poursuit dans son accroissement, Correspondance Mathématique et Physique, 10, 113-121 (1838)
[38] H. Von Förster, Some remarks on changing populations, In The Kinetics of Cellular Proliferation (ed. F. Stohlman Jr) Grune and Stratton, New York, (1959), 328-407.
[39] G. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, Monographs and Textbooks in Pure and Applied Mathematics, 89, Marcel Dekker, Inc., New York, 1985. · Zbl 0555.92014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.