×

State-of-the-art numerical simulation of fiber-reinforced thermoplastic forming processes. (English) Zbl 1061.76085

Summary: Short fiber reinforced composites have gained increasing technological importance due to their versatility that lends them to a wide range of applications. These composites are useful because they include a reinforcing phase in which high tensile strengths can be reached, and a matrix that allows to hold the reinforcement and to transfer applied stress to it. It is a well-known fact that such materials can have excellent mechanical, thermal and electrical properties that make them widely used in industry. During the manufacture process, fibers adopt a preferential orientation that can vary significantly across the geometry. Once the suspension is cooled or cured to make a solid composite, the fiber orientation becomes a key feature of the final product since it affects the elastic modulus, the thermal and electrical conductivities, and the strength of the composite material. In this work we analyze the state-of-the-art developments in the numerical modeling of short fiber suspensions involved in industrial flows.

MSC:

76T20 Suspensions
76Mxx Basic methods in fluid mechanics
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Abdul-Karem, T.; Binding, D. M.; Sindelar, M., Contraction and expansion flows of non-Newtonian fluids, Compos. Manuf., 4, 109-109 (1993) · doi:10.1016/0956-7143(93)90078-M
[2] Advani, S. G.; Tucker, C. L., The use of tensors to describe and predict fiber orientation in short fiber composites, J. Rheol., 31, 751-751 (1987) · doi:10.1122/1.549945
[3] Advani, S. G.; Tucker, C. L., Closure approximations for three-dimensional structure tensors, J. Rheol., 34, 367-367 (1990) · doi:10.1122/1.550133
[4] Ahmed, A.; Alexandrou, A. N., Unsteady flow of semi-concentrated suspensions using finite deformation tensors, J. Non-Newtonian Fluid Mech., 55, 115-115 (1994) · doi:10.1016/0377-0257(94)80001-4
[5] Aik-Kadi, A.; Grmela, M., Modelling the rheological behaviour of fibre suspensions in viscoelastic media, J. Non-Newtonian Fluid Mech., 53, 65-65 (1994) · doi:10.1016/0377-0257(94)85041-0
[6] Akbar, S.; Altan, M. C., On the solution of fiber orientation in two-dimensional homogeneous flows, Polym. Eng. Sci., 32, 810-810 (1992) · doi:10.1002/pen.760321208
[7] Altan, M. C.; Advani, S. G.; Guceri, S. I.; Pipes, R. G., On the descrption of the orientation state for fiber suspensions in homogenous flows, J. Rheol., 33, 1129-1129 (1989) · Zbl 0693.76022 · doi:10.1122/1.550047
[8] Altan, M. C.; Guceri, S. I.; Pipes, R. B., Anisotropic channel flow of fiber suspensions, J. Non-Newtonian Fluid Mech., 42, 65-65 (1992) · Zbl 0746.76002 · doi:10.1016/0377-0257(92)80005-I
[9] Altan, M. C.; Rao, B. N., Closed-form solution for the orientation field in a centergated disk, J. Rheol., 39, 581-581 (1995) · doi:10.1122/1.550714
[10] Ascher, U. M.; Mattheij, R. M.M.; Russel, R. D., Numerical solution of boundary value problems for ordinary differential equations (1988), Englewood Cliffs, N.J.: Prentice Hall, Englewood Cliffs, N.J. · Zbl 0671.65063
[11] Arranaga, A. B., Friction reduction characteristics of fibrous and colloidal substances, Nature, 225, 447-447 (1970) · doi:10.1038/225447a0
[12] Ausias, G.; Agassant, J. F.; Vincent, M., Flow and fiber orientation calculations in reinforced thermoplastic extruded tubes, Intern. Polym. Proc., 9, 51-51 (1994)
[13] Azaiez, J.; Homsy, G. M., Linear stability of free shear flow of viscoelastic liquids, J. Fluid Mech., 268, 37-37 (1994) · Zbl 0810.76023 · doi:10.1017/S0022112094001254
[14] Azaiez, J., Constitutive equations for fiber suspensions in viscoelastic media, J. Non-Newtonian Fluid Mech., 66, 35-35 (1996) · doi:10.1016/0377-0257(96)01461-9
[15] Azaiez, J.; Guenette, R.; Ait-Kadi, A., Investigation of the abrupt contraction flow of fiber suspensions in polymeric fluids, J. Non-Newtonian Fluid Mech., 73, 289-289 (1997) · doi:10.1016/S0377-0257(97)00047-5
[16] Azaiez, J., Linear stability of free shear flows of fiber suspensions, J. Fluid Mech., 404, 179-179 (2000) · Zbl 1156.76393 · doi:10.1017/S002211209900717X
[17] Azaiez, J., Reduction of free shear flows instability: effects of polymer versus fiber additives, J. Non-Newtonian Fluid Mech., 91, 233-233 (2000) · Zbl 0972.76026 · doi:10.1016/S0377-0257(99)00106-8
[18] Baloch, A.; Webster, M. F., A computer simulation of complex flows of fiber suspensions, Comput. Fluids, 24, 135-135 (1995) · Zbl 0826.76040 · doi:10.1016/0045-7930(94)00023-R
[19] Batchelor, G. K., The stress system in suspension of force free particules, J. Fluid Mech., 41, 545-545 (1970) · Zbl 0193.25702 · doi:10.1017/S0022112070000745
[20] Batchelor, G. K., Slender bodies theory for particles of arbitrary cross section in Stokes flows, J. Fluid. Mech., 44, 419-419 (1970) · Zbl 0216.52401 · doi:10.1017/S002211207000191X
[21] Berman, N., Drag reduction by polymers, Ann. Rev. Fluid Mech., 10, 47-47 (1978) · Zbl 0399.76058 · doi:10.1146/annurev.fl.10.010178.000403
[22] Chaidron, G.; Chinesta, F., On the steady solution of non-linear advection equations in steady recirculating flows, Computer Meth. Appl. Mech. Eng., 191, 1159-1159 (2002) · Zbl 0997.76008 · doi:10.1016/S0045-7825(01)00319-X
[23] G. Chaidron and F. Chinesta (2002b), “Further considerations in steady recirculating flows”,J. Non-Newtonian Fluid Mech., In press. · Zbl 1058.76526
[24] Chang, R. Y.; Shiao, F. C.; Yang, W. L., Simulation of director orientation of liquid crystalline polymers in 2-D flows, J. Non-Newtonian Fluid Mech., 55, 1-1 (1994) · doi:10.1016/0377-0257(94)80057-X
[25] Chiba, K.; Nakamura, K.; Boger, D. V., A numerical solution for the flow of dilute fiber suspensions through an axisymmetric contraction, J. Non-Newtonian Fluid Mech., 35, 1-1 (1990) · doi:10.1016/0377-0257(90)85069-B
[26] Chiba, K.; Nakamura, K., Numerical solution of anisotropic channel flow. Part 2: Fiber orientation in a developing flow through a parallel plate channel, Trans. J. Text. Mach. Soc. Japan, 47, T291-T299 (1994)
[27] Chiba, K.; Yamamoto, T.; Nakamura, K., Entry flow of dilute fiber suspensions through a tubular contraction, Nihon Reoroji Gakkaishi, 22, 98-98 (1994)
[28] Chiba, K.; Nakamura, K., On numerical solution of anisotropic channel flow. Part 3: Discussion on a closure approximation, Nihon Reoroji Gakkaishi, 23, 159-159 (1995)
[29] Chiba, K.; Nakamura, K., Numerical solution of fiber orientation in a recirculating flow. Part 1: Orientation of a single fiber in a recirculating flow within a slot, Trans. J. Text. Mach. Soc. Japan, 49, T85-T91 (1996)
[30] Chiba, K.; Nakamura, K., Numerical solution of fiber orientation in a recirculating flow. Part 2: Analysis of fiber orientation in a recirculating flow within a slot using a statistical method, Trans. J. Text. Mach. Soc. Japan, 49, T107-T113 (1996)
[31] Chiba, K.; Kawata, K.; Nakamura, K., Numerical solution of fiber orientation in a recirculating flow. Part 3: Fiber orientation in a recirculating flow within a salient corner of an abrupt expansion channel, Trans. J. Text. Mach. Soc. Japan, 50, T1-T8 (1997)
[32] Chiba, K.; Nakamura, K., Numerical solution of fiber suspension flow through a complex channel, J. Non-Newtonian Fluid Mech., 78, 167-167 (1998) · Zbl 1143.76590 · doi:10.1016/S0377-0257(98)00067-6
[33] K. Chiba, K. Yasuda and K. Nakamura (2001), “Numerical solution of fiber suspension flow through a parallel plate channel by coupling flow field with fiber orientation distribution”,Proc. 3rd Pacific Rim Conference on Rheol., Vancouver. · Zbl 0981.76529
[34] Chinesta, F.; Chaidron, G., On the steady solution of linear advection problems in steady recirculating flows, J. Non-Newtonian Fluid Mech., 98, 65-65 (2001) · Zbl 0973.76004 · doi:10.1016/S0377-0257(00)00224-X
[35] F. Chinesta, T. Mabrouki and A. Ramon (2002), “Some difficulties in the flow front treatment in fixed mesh simulations of composites forming processes”,5th Esaform Conference.
[36] Chono, S.; Makino, M., Numerical simulation of fiber suspension flow between parallel plates, Trans-B, Mach. Soc. Japan, 61, 3190-3190 (1995)
[37] Christensen, R. M., A critical evaluation for a class of micro-mecanics models, J. Mech. Phys. Solids, 38, 379-379 (1990) · doi:10.1016/0022-5096(90)90005-O
[38] Chung, S. T.; Kwon, T. H., Numerical simulation of fiber orientation in injection molding of short-fiber- reinforced thermoplastics, Polym. Eng. Sci., 35, 604-604 (1995) · doi:10.1002/pen.760350707
[39] T. Coupez, D. Daboussy and E. Bigot (1999), “Mesh adaptation for 3D injection numerical simulation”,15th Polymer Processing Society Conference.
[40] Daily, J. W.; Bugliarello, G., Basic data for dilute fiber suspensions in uniform flow with shear, TAPPI, 44, 497-497 (1961)
[41] Dinh, S. M.; Armstrong, R. C., A rheological equation of state for semiconcentrated fiber suspensions, J. Rheol., 28, 207-207 (1984) · Zbl 0552.76009 · doi:10.1122/1.549748
[42] Doi, M., Molecular dynamics and rheological properties of concentrated solutions of rodlike polymers in isotropic and liquid crystalline phases, J. Polym. Sci., Polym. Phys. Ed., 19, 229-229 (1981) · doi:10.1002/pol.1981.180190205
[43] A.A. Draad and M.A. Hulsen (1995), “Transition from laminar to turbulent flow for non-Newtonian fluids”, InAdvances in Turbulence V, R. Benzi (ed.), 105.
[44] P.G. Drazin and W.H. Reid (1981),Hydrodynamic Stability, Cambridge University Press. · Zbl 0449.76027
[45] Ellis, H. D., Effects of shear treatment on drag reducing polymer solutions and fiber suspensions, Nature, 226, 352-352 (1970) · doi:10.1038/226352a0
[46] Ericksen, J. L., Anisotropic fluids, Arch. Rat. Mech. Anal., 4, 231-231 (1960) · Zbl 0093.18002
[47] Ericksen, J. L., Transversely isotropic fluids, Kolloidzeitschrift, 173, 117-117 (1960) · doi:10.1007/BF01502416
[48] Ericksen, J. L., Instability in Couette flow of anisotropic fluids, Quart. J. Mech. App. Math., 19, 455-455 (1966) · Zbl 0144.46401 · doi:10.1093/qjmam/19.4.455
[49] Ericsson, K. A.; Toll, S.; Manson, J. A.E., The two-way interaction between anisotropic flow and fiber orientation in squeeze flow, J. Rheol., 41, 491-491 (1997) · doi:10.1122/1.550833
[50] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. Roy. Soc. London, 241, 376-376 (1957) · Zbl 0079.39606
[51] Filipsson, L. G.R.; Torgny Lagerstedt, J. H.; Bark, F. H., A note on the analogous behaviour of turbulent jets of dilute polymer solutions and fibre suspensions, J. Non-Newtonian Fluid Mech., 3, 97-97 (1977) · doi:10.1016/0377-0257(77)80016-5
[52] Gadd, G. E., Friction reduction characteristics of fibrous and colloidal substances, Nature, 206, 463-463 (1965) · doi:10.1038/206463a0
[53] P.G. de Gennes (1990),Introduction to Polymer Dynamics, Cambridge.
[54] Gilormini, P.; Vernusse, P., Tenseur d’Eshelby et problème d’inclusion dans le cas isotrope transverse incompressible, C.R. Acad. Sci. Paris, 314, 257-257 (1992) · Zbl 0754.73024
[55] Grmela, M.; Carreau, P. J., Conformation tensor rheological models, J. Non-Newtonian Fluid Mech., 23, 271-271 (1987) · Zbl 0616.76010 · doi:10.1016/0377-0257(87)80022-8
[56] V. Gupta, R. Sureshkumar, B. Khomami and J. Azaiez, “Linear stability of Taylor-Couette flow of semi-dilute non-Brownian fiber suspensions”, submitted toPhys. Fluids. · Zbl 1185.76157
[57] Hibberd, M. F.; Kwade, M.; Scharf, R., Influence of drag reducing additives on the structure of turbulence in a mixing layer, Rheol. Acta, 21, 582-582 (1982) · doi:10.1007/BF01534352
[58] Hinch, E. J.; Leal, L. G., Constitutive equations in suspension mechanics. Part 1, J. Fluid. Mech., 71, 481-481 (1975) · Zbl 0315.76057 · doi:10.1017/S0022112075002698
[59] Hinch, E. J.; Leal, L. G., Constitutive equations in suspension mechanics. Part 2: Approximate forms for a suspension of rigid particles affected by Brownian rotations, J. Fluid Mech., 76, 187-187 (1976) · Zbl 0352.76005 · doi:10.1017/S0022112076003200
[60] Hinch, E. J., Mechanical models of dilute polymer solutions in strong flow, Phys. Fluids, 20, 22-22 (1977) · doi:10.1063/1.861735
[61] Hoyt, J. W., The effect of additives on fluid friction, ASME J. Basic Eng., 94D, 258-258 (1972)
[62] Jeffery, G. B., The motion of ellipsoidal particles immersed in viscous fluid, Proc. R. Soc., 102, 161-161 (1922) · JFM 49.0748.02 · doi:10.1098/rspa.1922.0078
[63] D.D. Joseph (1990),Fluid Dynamics of Viscoelastic Liquids, Springer Verlag. · Zbl 0698.76002
[64] Kale, D. D.; Metzner, A. B., Turbulent drag reduction in dilute fiber suspensions: Mechanistic considerations, AICHE J., 22, 669-669 (1976) · doi:10.1002/aic.690220406
[65] Koch, D. L., A model for orientational diffusion in fibre suspensions, Phys. Fluids, 7, 2086-2086 (1995) · Zbl 1039.76525 · doi:10.1063/1.868455
[66] Krieger, I. M.; Dougherty, T. J., A mechanism for non Newtonian flow in suspension of rigid spheres, Trans. Soc. Rheol., 3, 137-137 (1959) · Zbl 0100.21502 · doi:10.1122/1.548848
[67] M.T., Landahl (1973), “Drag reduction by polymer addition”, InProceedings of Thirteenth International Congress of Theoretical and Applied Mechanics, E. Becker and G.K. Mikhailov (Eds.), 177, Springer Verlag.
[68] Lee, W. K.; Vaseleski, R. C.; Metzner, A. B., Turbulent drag reduction in polymeric solutions containing suspended fibers, AICHE J., 20, 128-128 (1974) · doi:10.1002/aic.690200116
[69] Leslie, F. M., The stability of Couette flow of certain anisotropic fluids, Proc. Camb. Phil. Soc., 60, 949-949 (1964) · doi:10.1017/S0305004100038421
[70] Leslie, F. M., Some constitutive equations for anisotropic fluids, Quart. J. Mech. Appl. Math., XIX, 357-357 (1966) · Zbl 0148.20504 · doi:10.1093/qjmam/19.3.357
[71] Leslie, F. M., Some constitutive equations for liquid crystals, Arch. Rat. Mech. Anal., 28, 265-265 (1968) · Zbl 0159.57101 · doi:10.1007/BF00251810
[72] G.G. Lipscomb (1986),Ph.D. dissertation, University of California, Berkeley.
[73] Lipscomb, G. G.; Denn, M. M.; Hur, D. H.; Boger, D. V., The flow of fiber suspensions in complex geometries, J. Non-Newtonian Fluid Mech., 26, 297-297 (1988) · doi:10.1016/0377-0257(88)80023-5
[74] Lumley, J. L., Drag reduction by additives, Ann. Rev. Fluid Mech., 1, 367-367 (1969) · doi:10.1146/annurev.fl.01.010169.002055
[75] McComb, W. D.; Chan, K. T., Drag reduction in fiber suspensions: transitional behaviour due to fibre degradation, Nature, 280, 45-45 (1979) · doi:10.1038/280045a0
[76] Meslin, F., Propietés rhéologiques des composites fibres courtes à l’état fondu (1997), Cachan: ENS, Cachan
[77] Meslin, F.; Poitou, A.; Chinesta, F., Identification du comportement rhéologique de suspensions de fibres courtes, Les Cahiers de Rhéologie, 16, 209-216 (1998)
[78] F. Meslin, A. Poitou and F. Chinesta (1999), “A new rheometer for molten fiber composites”,15th Polymer Processing Society Conference.
[79] Mih, W.; Parker, J., Velocity profile measurement and a phenomenological description of turbulent fiber suspension pipe flow, TAPPI, 50, 237-237 (1967)
[80] Monton, I., Numerical simulation of hort fiber composites forming processes (2002), Spain: University of Valencia, Spain
[81] T. Mura (1982),Micromechanics of Defects in Solids, Martinus Nijhoff.
[82] Nsom, B., Transition from circular Couette flow to Taylor vortex flow in dilute and semi-concentrated suspensions of stiff fibers, J. Phys., II 4, 9-9 (1994)
[83] Nsom, B., Computation of drag reduction in fiber suspensions, Fluid Dyn. Res., 14, 275-275 (1994) · doi:10.1016/0169-5983(94)90036-1
[84] Nsom, B., Stability of fiber suspension flow in curved channel, J. Phys., II 6, 1483-1483 (1996)
[85] Papanastasiou, T. C.; Alexandrou, A. N., Isothermal extrusion of non-dilute fiber suspensions, J. Non-Newtonian Fluid Mech., 25, 313-313 (1987) · doi:10.1016/0377-0257(87)85032-2
[86] Phan-Thien, N.; Graham, A. L., The squeezing flow of a model suspension fluid, Rheol. Acta, 29, 433-433 (1990) · doi:10.1007/BF01376794
[87] Phan-Thien, N.; Graham, A. L., A new constitutive model for fibre suspensions: flow past a sphere, Rheol. Acta, 30, 44-44 (1991) · doi:10.1007/BF00366793
[88] Pichelin, E.; Coupez, T., Finite element solution of the 3D mold filling for viscous incompressible fluid, Comput. Meth. Appl. Mech. Engng., 163, 359-359 (1998) · Zbl 0963.76051 · doi:10.1016/S0045-7825(98)00024-3
[89] Pilipenko, V. N.; Kalinichenko, N. M.; Lemak, A. S., Stability of the flow of a fibre suspension in the gap between coaxial cylinders, Sov. Phys. Dokl., 26, 646-646 (1981) · Zbl 0483.76016
[90] Pinho, F. T.; Whitelaw, J. H., Flow of non-Newtonian fluids in a pipe, J. Non-Newtonian Fluid Mech., 34, 129-129 (1990) · doi:10.1016/0377-0257(90)80015-R
[91] Pirih, R. J.; Swanson, W. M., Drag reduction and turbulence modification in rigid particle suspensions, Can. J. Chem. Eng., 50, 228-228 (1972)
[92] O. Pironneau (1989),Finite methods for fluids, Wiley. · Zbl 0665.73059
[93] Poitou, A.; Chinesta, F.; Torres, R., Numerical simulation of the steady recirculating flows of fiber suspensions, J. Non-Newtonian Fluid Mech., 90, 65-65 (2000) · Zbl 0955.76090 · doi:10.1016/S0377-0257(99)00055-5
[94] Rahnama, M.; Koch, D. L.; Shaqfeh, E. S.G., The effect of hydrodynamic interactions on the orientation distribution in a fibre suspension subject to simple shear flow, Phys. Fluid, 7, 487-487 (1995) · Zbl 1039.76528 · doi:10.1063/1.868647
[95] Ranganathan, S.; Advani, S. G., A simultaneous solution for flow and fiber orientation in axisymmetric diverging radial flow, J. Non-Newtonian Fluid Mech., 47, 107-107 (1993) · Zbl 0775.76007 · doi:10.1016/0377-0257(93)80047-F
[96] Rosenberg, J.; Denn, M. M.; Keunings, R., Simulation of non-recirculating flows of dilute fiber suspensions, J. Non-Newtonian Fluid Mech., 37, 317-317 (1990) · Zbl 0712.76017 · doi:10.1016/0377-0257(90)90011-Y
[97] Sasaki, S., Drag reduction effect of rod-like polymer solutions: I. Influences of polymer conecentration and rigidity of skeletal back bone, J. Phys. Soc. Japan, 60, 868-868 (1991) · doi:10.1143/JPSJ.60.868
[98] Sasaki, S., Drag reduction effect of rod-like polymer solutions: II. Comparison between microgel and linear type polyions, J. Phys. Soc. Japan, 60, 2613-2613 (1991) · doi:10.1143/JPSJ.60.2613
[99] Shaqfeh, E. S.G.; Frederickson, G. H., The hydrodynamic stress in a suspension of rods, Phys. Fluids A, 2, 7-7 (1990) · Zbl 0705.76033 · doi:10.1063/1.857683
[100] Shaqfeh, E. S.G., Fully elastic instabilities in viscometric flows, Ann. Rev. Fluid Mech., 28, 129-129 (1996)
[101] Sharma, R. S.; Seshadri, V.; Malhotra, R. C., Turbulent drag reduction by injection of fibers, J. Rheol., 22, 643-643 (1978) · doi:10.1122/1.549495
[102] M. Sussman, P. Smereka and S. Osher (1994), “A level set approach to computing solutions to incompressible two-phase flows”,J. Comput. Phys., 114. · Zbl 0808.76077
[103] W.G. Tiederman (1990), “The effect of dilute polymer solution on viscous drag and turbulent structure”, InStructure of Turbulence and Drag Reduction IUTAM Symp., A. Gyr (Ed.), Springer Verlag.
[104] Tucker, C. L., Flow regime for fiber suspensions in narrow gaps, J. Non-Newt. Fluid. Mech., 39, 239-239 (1991) · doi:10.1016/0377-0257(91)80017-E
[105] Vaseleski, R. C.; Metzner, A. B., Drag reduction in the turbulent flow of fiber suspensions, AICHE J., 20, 301-301 (1974) · doi:10.1002/aic.690200214
[106] B.E. VerWeyst, C.L. Tucker III, P.H. Foss and J.F. O’Gara (1999), “Fiber orientation in 3-D injection molded features: prediction and experiment”,15th Polymer Processing Society Conference.
[107] P.S. Virk and D.L. Wagger (1990), “Aspects of mechanisms of type B drag reduction” InStructure of Turbulence and Drag Reduction, IUTAM Symp., A. Gyr (Ed.), Springer Verlag.
[108] Yang, Y.; Chung, J. N.; Troutt, T. R.; Crowe, C. T., The influence of particles on the spatial stability of two-phase mixing layers, Phys. Fluids, 2, 1839-1839 (1990) · doi:10.1063/1.857657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.