×

On the importance of strong fluid-solid coupling with application to human phonation. (English) Zbl 1400.76041

Summary: An advanced finite element (FE) method is presented and applied to simulate the fluid-solid-acoustic interaction in human phonation. We apply an arbitrary-Lagrangian-Eulerian (ALE) method, which allows coupling of the Eulerian fluid field with the Lagrangian mechanical field. Thereby, we investigate strong and weak (sequential staggered) coupling schemes for flow and structural mechanics. The acoustic field is computed by acoustic perturbation equations to account for convection and refraction effects of the sound in the flow region. For our application – the human phonation – we can assume a low Mach number flow and therefore use a hybrid aeroacoustic approach, which just consider a forward coupling from the flow to the acoustic field.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76Q05 Hydro- and aero-acoustics
76Z05 Physiological flows
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
Full Text: DOI

References:

[1] Alipour, F.; Berry, D. A.; Titze, I. R., ‘A finite-element model of vocal-fold vibration’, Journal of the Acoustical Society of America, 108, 6, 3003-3012, (2000)
[2] Bogey, C.; Bailly, C.; Juvé, D., ‘Computation of flow noise using source terms in linearized Euler’s equations’, AIAA Journal, 40, 2, 1235-243, (2002)
[3] Causin, P.; Gerbeau, J. F.; Nobile, F., ‘Added-mass effect in the design of partitioned algorithms for fluid-structure problems’, Computer Methods in Applied Mechanics and Engineering, 194, 42-44, (2005) · Zbl 1101.74027
[4] Crighton, D. G.; Hardin, J. C.; Hussaini, M. Y., ‘Computational aeroacoustics for low Mach number flows’, Computational Aeroacoustics, (1992), Springer-Verlag
[5] de Vries, M. P.; Schutte, H. K.; Veldman, A. E.P; Verkerke, G. J., ‘Glottal flow through a two-mass model: comparison of Navier-Stokes solutions with simplified models’, Journal of the Acoustical Society of America, 111, 4, 1847-185, (2002)
[6] Escobar, M., Finite-element Simulation of Flow-induced Noise using Lighthill’s Acoustic Analogy, (2007), University of Erlangen-Nuremberg
[7] Ewert, R.; Schröder, W., ‘Acoustic perturbation equations based on flow decomposition via source filtering’, Journal of Computational Physics, 188, 2, 365-398, (2003) · Zbl 1022.76050
[8] Ferziger, J. H.; Perić, M., Computational Methods for Fluid Dynamics, (2002), Springer Berlin Heidelberg · Zbl 0998.76001
[9] Ffowcs-Williams, J. E.; Hawkings, D. L., ‘Sound radiation by turbulence and surfaces in arbitrary motions’, Philosophical Transactions of the Royal Society of London, 264 A, 1151, 321-342, (1969) · Zbl 0182.59205
[10] Flemisch, B.; Kaltenbacher, M.; Wohlmuth, B. I., ‘Elastoacoustic and acoustic-acoustic coupling on nonmatching grids’, International Journal for Numerical Methods in Engineering, 67, 13, 1791-1810, (2006) · Zbl 1127.74042
[11] Förster, Ch.; Wall, W. A.; Ramm, E., ‘Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows’, Computer Methods in Applied Mechanics and Engineering, 196, 7, 1278-1293, (2007) · Zbl 1173.74418
[12] Gerstenberger, A.; Wall, W. A., ‘An extended, finite-element method/Lagrange multiplier based approach, for fluid-structure interaction’, Computer Methods in Applied Mechanics and Engineering, 197, 19, 1699-1714, (2008) · Zbl 1194.76117
[13] Gömmel, A., Modellbildung und Fluid-Struktur-Interaktion in der Biomechanik am Beispiel der menschlichen Phonation, (2010), RWTH Aachen
[14] Hirt, C.; Amsden, A. A.; Cook, J., ‘An arbitrary Lagrangian-Eulerian computing method for all flow, speeds’, Journal for Computational Physics, 14, 3, 227-253, (1974) · Zbl 0292.76018
[15] Hughes, T. J.R., The Finite-Element Method, (2000), New Jersey: Prentice-Hall, New Jersey
[16] Hughes, T. J.R.; Liu, W. K.; Zimmermann, T., ‘Lagrangian-Eulerian finite-element formulation for compressible viscous flows’, Computer Methods in Applied Mechanics and Engineering, 29, 3, 329-349, (1981) · Zbl 0482.76039
[17] Hughes, T. J.R.; Scovazzi, G.; Franca, L. P., Encyclopedia of Computational Mechanics: Ch 2 Multiscale and Stabilized Methods, 3, (2004), John Wiley & Sons Ltd
[18] Hüppe, A.; Kaltenbacher, M., ‘Spectral finite elements for computational aeroacoustics using acoustic perturbation equation’, J. Comput. Acoust., 20, 2, (2012) · Zbl 1360.76142 · doi:10.1142/S0218396X1240005X
[19] Hüppe, A.; Kaltenbacher, M., ‘Stable matched layer, for the acoustic conservation equations in the time, domain’, J. Comput. Acoust., 20, 1, (2012) · Zbl 1291.76200 · doi:10.1142/S0218396X11004511
[20] Hüppe, A.; De Gennaro, M.; Kaltenbacher, M.; Kühnelt, H., ‘Aeroacoustic Investigation of an airfoil using a mixed finite element scheme’, ECCOMAS 20CD-ROM Proceedings, (2012)
[21] Kaltenbacher, M., Numerical Simulation of Mechatronic Sensors and Actuators, (2007), Berlin, Heidelberg: Springer, Berlin, Heidelberg · Zbl 1072.78001
[22] Kaltenbacher, M.; Escobar, M.; Ali, I.; Becker, S., ‘Numerical simulation of flow-induced noise using LES/SAS and Lighthill s acoustics analogy’, Int. J. Meth. Fl, 63, 9, 1103-1122, (2010) · Zbl 1425.76103
[23] Kaltenbacher, M.; Hüppe, A.; Zörner, S., ‘Computational aeroacoustics of human phonation’, (2012)
[24] Klöppel, T.; Popp, A.; Küttler, U.; Wall, W. A., ‘Fluid-structure interaction for non-conforming interfaces based on a dual mortar formulation’, Computer Methods in Applied Mechanics and Engineering, 200, 4,5, 3111-3126, (2011) · Zbl 1230.74185
[25] Krane, M. H., ‘Aeroacoustic production of low-frequency unvoiced speech sounds’, Journal of the Acoustical Society of America, 118, 1, 410-427, (2005)
[26] Lele, S., ‘Computational aeroacoustics: a review’, AIAA Journal, (1997) · doi:10.2514/6.1997-18
[27] Lighthill, M. J., ‘On sound generated aerodynamically. Part I: general theory’, Proc. of the Royal Society of London, A211, 564-587, (1952) · Zbl 0049.25905
[28] Lighthill, M. J., ‘On sound generated aerodynamically, Part II: turbulence as a source of sound’, Proc. of the Royal Society of London, A222, 1-32, (1954) · Zbl 0055.19109
[29] Link, G., A Finite Element Scheme for Fluid-Solid-Acoustics Interactions and its, Application to Human Phonation, (2008), University Erlangen-Nuremberg
[30] Link, G.; Kaltenbacher, M.; Breuer, M.; Döllinger, M., ‘A 2D finite-element scheme for fluid-solid-acoustic interactions and its application to human phonation’, Computer Methods in Applied Mechanics and Engineering, 198, 41-44, 3321-3334, (2009) · Zbl 1230.74188
[31] Luo, H.; Mittal, R.; Zheng, X.; Bielamowicz, S. A.; Walsh, R. J.; Hahn, J. K., ‘An immersed-boundary method for, flow-structure interaction in biological systems with application to phonation’, Journal of Computational Physics, 227, 22, 9303-9332, (2008) · Zbl 1148.74048
[32] Mittal, R.; Iaccarino, G., ‘An immersed boundary methods’, Ann. Rev. Fluid Mech., 37, 1, 239-261, (2005) · Zbl 1117.76049
[33] Oberai, A.; Ronaldkin, F.; Hughes, T., ‘Computation of trailing-edge noise due to turbulent flow over an airfoil’, AIAA Aeroacoustics Journal, 40, 11, 206-2216, (2002)
[34] Peskin, C. S., ‘An immersed boundary method’, Acta Numer., 11, 1, 479-517, (2002) · Zbl 1123.74309
[35] Rosa, M. O.; Pereira, J. C.; Grellet, M.; Alwan, A., ‘A contribution to simulating a three-dimensional, larynx model using the finite-element method’, Journal of the Acoustical Society of America, 114, 5, 2893-2905, (2003)
[36] Schäfer, F.; Kniesburges, S.; Uffinger, T.; Becker, S.; Grabinger, J.; Link, G.; Kaltenbacher, M., ‘Numerical simulation of fluid-structure- and fluid-structure-acoustic interaction based on a partitioned coupling scheme’, (2007), Springer · Zbl 1223.76063
[37] Seo, J.; Moon, Y., ‘Linearized perturbed compressible equations for low Mach number aeroacoustics’, Journal of Computational Physics, 218, 2, 702-719, (2006) · Zbl 1161.76546
[38] Seo, J. H.; Mittal, R., ‘A high-order immersed boundary method for acoustic wave scattering and low-Mach number flow-induced sound in complex geometries’, J. Comput. Phys., 230, 4, 1000-1019, (2011) · Zbl 1391.76698
[39] Tao, C.; Jiang, J. J.; Zhang, Y., ‘Simulation of vocal fold impact pressures with a self-oscillating finite-element model’, Journal of the Acoustical Society of America, 119, 6, 3987-3994, (2003)
[40] Tezduyar, T. E., Encyclopedia of Computational Mechanics: Ch. Finite-element Methods for Fluid Dynamic with Moving Boundaries and Interfaces, (2004), John Wiley & Sons Ltd
[41] Thomson, S. L.; Mongeau, L.; Frankel, S. H., ‘Physical and numerical flow-excited vocal fold models’, 147-150, (2003), Firenze University Press
[42] Wagner, C.; Hüttl, T.; Sagaut, P., Large-Eddy Simulation for Acoustics, (2007), New York: Cambridge University Press, New York
[43] Wall, W. A., ‘Computational fluid-solid-mechanics, in biomedical engineering - where to go from here?’, ECCOMAS 20CD-ROM Proceedings, (2012)
[44] Wall, W. A.; Gerstenberger, A.; Gammnitzer, P.; Förster, C.; Ramm, E.; Bungrartz, H-J.; Schäfer, M., ‘Large deformation fluid-structure interaction - advances in ALE methods and new fixed grid approaches’, Fluid-Structure Interaction: Modeling, Simulation, Optimization, (2006), Springer
[45] Yigit, S.; Schäfer, M.; Heck, M., ‘Grid movement techniques and their influence on laminar fluid structure interaction computations’, Journal of Fluids and Structures, 24, 6, (2008)
[46] Zhang, Z.; Mongeau, L.; Franke, S. H.; Thomson, S. L., ‘Sound generation by steady flow through glottis-shaped offices’, Journal of the Acoustical Society of America, 116, 3, 1720-1728, (2004)
[47] Zhao, W.; Frankel, S. H.; Mongeau, L., ‘Numerical simulation of sound from confined pulsating axisymmetric jets’, AIAA Journal, 39, 10, 21868-21874, (2001)
[48] Zhao, W.; Zhang, C.; Frankel, S. H.; Mongeau, L., ‘Computational aeroacoustics of phonation, Part I: computational methods and sound generation mechanisms’, Journal of the Acoustical Society of America, 112, 5, 2134-2146, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.