×

Modeling and analysis of release strategies of sterile mosquitoes incorporating stage and sex structure of wild ones. (English) Zbl 1532.92122

MSC:

92D45 Pest management
92D25 Population dynamics (general)
34C25 Periodic solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations

References:

[1] H, A bio-mathematical approach to control the Anopheles mosquito using sterile males technology, Int. J. Biomath., 15, 2250037 (2022) · Zbl 1497.92355 · doi:10.1142/S1793524522500371
[2] H, The sterile insect release method for pest control: a density dependent model, Environ. Entomol., 9, 810-817 (1980) · doi:10.1093/ee/9.6.810
[3] H, Pest population stability under sterile releases, Popul. Ecol., 24, 405-416 (1982) · doi:10.1007/BF02515585
[4] G, The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti, PLoS Pathog., 6, e1000833 (2010) · doi:10.1371/journal.ppat.1000833
[5] F, Three-dimensional spread analysis of a Dengue disease model with numerical season control, Int. J. Biomath., 14, 2150066 (2021) · Zbl 1479.35882 · doi:10.1142/S1793524521500662
[6] X, Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572, 56-61 (2019) · doi:10.1038/s41586-019-1407-9
[7] Z, Impact of the impulsive releases and Allee effect on the dispersal behavior of the wild mosquitoes, J. Appl. Math. Comput., 68, 1527-1544 (2022) · Zbl 1491.92138 · doi:10.1007/s12190-021-01569-y
[8] P, Implementation of control strategies for sterile insect techniques, Math. Biosci., 314, 43-60 (2019) · Zbl 1425.92126 · doi:10.1016/j.mbs.2019.06.002
[9] M, On the use of the sterile insect release technique to reduce or eliminate mosquito populations, Appl. Math. Modell., 68, 443-470 (2019) · Zbl 1481.92117 · doi:10.1016/j.apm.2018.11.026
[10] A, The coexistence of fast and slow diffusion processes in the life cycle of Aedes aegypti mosquitoes, Int. J. Biomath., 14, 2050087 (2021) · Zbl 1464.35371 · doi:10.1142/S1793524520500874
[11] Z, Periodic orbits of a mosquito suppression model based on sterile mosquitoes, Mathematics, 10, 462 (2022) · doi:10.3390/math10030462
[12] M, Assessing the efficiency of Wolbachia driven Aedes mosquito suppression by delay differential equations, J. Theor. Biol., 440, 1-11 (2018) · Zbl 1400.92490 · doi:10.1016/j.jtbi.2017.12.012
[13] Y, A delayed differential equation model for mosquito population suppression with sterile mosquitoes, Discrete Contin. Dyn. Syst. - Ser. B, 25, 4659-4676 (2020) · Zbl 1468.34112 · doi:10.3934/dcdsb.2020118
[14] Y, Asymptotic stability in a mosquito population suppression model with time delay, Int. J. Biomath., 16, 2250092 (2023) · Zbl 1519.92198 · doi:10.1142/S1793524522500929
[15] Y, Global asymptotic stability in a non-autonomous delay mosquito population suppression model, Appl. Math. Lett., 124, 107599 (2022) · Zbl 1478.92157 · doi:10.1016/j.aml.2021.107599
[16] B, Existence and stability of periodic solutions in a mosquito population suppression model with time delay, J. Differ. Equations, 315, 159-178 (2022) · Zbl 1492.34085 · doi:10.1016/j.jde.2022.01.036
[17] B, Modeling and analysis of the implementation of the Wolbachia incompatible and sterile insect technique for mosquito population suppression, SIAM J. Appl. Math., 81, 718-740 (2021) · Zbl 1468.34074 · doi:10.1137/20M1368367
[18] B, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 65, 1749-1764 (2022) · Zbl 1497.92333 · doi:10.1007/s11425-021-1891-7
[19] B, At most two periodic solutions for a switching mosquito population suppression model, J. Dyn. Differ. Equations, 65, 1-13 (2022) · Zbl 1529.34051 · doi:10.1007/s10884-021-10125-y
[20] B, Impact of releasing period and magnitude on mosquito population in a sterile release model with delay, J. Math. Biol., 85, 18 (2022) · Zbl 1503.34158 · doi:10.1007/s00285-022-01785-5
[21] R, Sustainable vector/pest control using the permanent sterile insect technique, Math. Methods Appl. Sci., 43, 10391-10412 (2020) · Zbl 1472.34083 · doi:10.1002/mma.6385
[22] M, Study of the sterile insect release technique for a two-sex mosquito population model, Math. Biosci. Eng., 18, 1314-1339 (2021) · Zbl 1471.92392 · doi:10.3934/mbe.2021069
[23] M, Impulsive release strategies of sterile mosquitos for optimal control of wild population, J. Biol. Dyn., 15, 151-176 (2021) · Zbl 1484.92146 · doi:10.1080/17513758.2021.1887380
[24] M, Modelling and analysis of impulsive release of sterile mosquitoes, J. Biol. Dyn., 11, 147-171 (2017) · Zbl 1448.92296 · doi:10.1080/17513758.2016.1254286
[25] J, Modeling mosquito population suppression based on delay differential equations, SIAM J. Appl. Math., 78, 3168-3187 (2018) · Zbl 1401.92171 · doi:10.1137/18M1204917
[26] J, Global asymptotic stability in an interactive wild and sterile mosquito model, J. Differ. Equations, 269, 6193-6215 (2020) · Zbl 1444.34103 · doi:10.1016/j.jde.2020.04.036
[27] J, Existence and stability of a unique and exact two periodic orbits for an interactive wild and sterile mosquito model, J. Differ. Equations, 269, 10395-10415 (2020) · Zbl 1457.34084 · doi:10.1016/j.jde.2020.07.019
[28] J, Dynamics of interactive wild and sterile mosquitoes with time delay, J. Biol. Dyn., 13, 606-620 (2019) · Zbl 1448.92260 · doi:10.1080/17513758.2019.1682201
[29] G, Stability analysis in a mosquito population suppression model, J. Biol. Dyn., 14, 578-589 (2020) · Zbl 1447.92349 · doi:10.1080/17513758.2020.1792565
[30] S, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, Discrete Contin. Dyn. Syst. - Ser. B, 27, 3039-3052 (2022) · Zbl 1500.34035 · doi:10.3934/dcdsb.2021172
[31] L, Mosquito population control strategies for fighting against arboviruses, Math. Biosci. Eng., 16, 6274-6297 (2019) · Zbl 1470.92276 · doi:10.3934/mbe.2019313
[32] D, Combining the sterile insect technique with the incompatible insect technique: I-Impact of Wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus, PLoS One, 10, 6274-6297 (2015) · doi:10.1371/journal.pone.0121126
[33] S, Sexual perfor-mance of male mosquito Aedes albopictus, Med. Vet. Entomol., 25, 454-459 (2011) · doi:10.1111/j.1365-2915.2011.00962.x
[34] L, Optimal control strategies for the sterile mosquitoes technique, J. Differ. Equations, 311, 229-266 (2022) · Zbl 1480.92161 · doi:10.1016/j.jde.2021.12.002
[35] K, Local exponential stability of several almost periodic positive solutions for a classical controlled GA-predation ecosystem possessed distributed delays, Appl. Math. Comput., 437, 127540 (2023) · Zbl 1510.92194 · doi:10.1016/j.amc.2022.127540
[36] K, Local exponential stability of four almost-periodic positive solutions for a classic Ayala-Gilpin competitive ecosystem provided with varying-lags and control terms, Int. J. Control, 2022 (2022) · Zbl 1520.92091 · doi:10.1080/00207179.2022.2078425
[37] K, Existence and stability of a nonlinear distributed delayed periodic AG-ecosystem with competition on time scales, Axioms, 12, 315 (2023) · doi:10.3390/axioms12030315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.