×

Fractional calculus and applications of family of extended generalized Gauss hypergeometric functions. (English) Zbl 1440.33005

Summary: The aim of the present paper is to establish certain new image formulae of family of some extended generalized Gauss hypergeometric functions by applying the operators of fractional derivative involving \(_2F_1(.)\) due to Saigo. Furthermore, by employing some integral transforms on the resulting formulas, we obtained some more image formulas and also develop a new and further generalized form of the fractional kinetic equation involving the family of some extended generalized Gauss hypergeometric functions and the manifold generality of the family of functions is discussed in terms of the solution of the fractional kinetic equation. The results obtained here are quite general in nature.

MSC:

33C20 Generalized hypergeometric series, \({}_pF_q\)
26A33 Fractional derivatives and integrals
33E30 Other functions coming from differential, difference and integral equations
Full Text: DOI

References:

[1] P. Agarwal; M. Chand; G. Singh, Certain fractional kinetic equations involving the product of generalized k-Bessel function, Alexandria Engineering Journal, 55, 3053-3059 (2016) · doi:10.1016/j.aej.2016.07.025
[2] P. Agarwal; S. K. Ntouyas; S. Jain; M. Chand; G. Singh, Fractional kinetic equations involving generalized k-Bessel function via Sumudu transform, Alexandria Engineering Journal, 57, 1937-1942 (2018) · doi:10.1016/j.aej.2017.03.046
[3] M. A. Al-Bassam; Y. K. Luchko, On generalized fractional calculus and its application to the solution of integro-differential equations, J. Fract. Calc., 7, 69-88 (1995) · Zbl 0840.44002
[4] A. Atangana; J. F. Gómez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, The European Physical Journal Plus, 133, 166 (2018) · doi:10.1140/epjp/i2018-12021-3
[5] A. Atangana, Non validity of index law in fractional calculus: A fractional differential operator with Markovian and non-Markovian properties, Physica A: Statistical Mechanics and its Applications, 505, 688-706 (2018) · Zbl 1514.34009 · doi:10.1016/j.physa.2018.03.056
[6] A. Atangana, Blind in a commutative world: Simple illustrations with functions and chaotic attractors, Chaos, Solitons and Fractals, 114, 347-363 (2018) · Zbl 1415.34009 · doi:10.1016/j.chaos.2018.07.022
[7] M. Axtell and M. E. Bise, Fractional Calculus Applications in Control Systems, In: Proceedings of the 1990 National Aerospace and Electronics Conference, Dayton, OH, USA, 1990.
[8] M. Caputo, Linear models of dissipation whose \(q\) is almost frequency independent Ⅱ, Geophys. J. Royal Astr. Soc., 13, 529-539 (1967) · doi:10.1111/j.1365-246X.1967.tb02303.x
[9] M. A. Chaudhry; A. Qadir; M. Rafique; S. M. Zubair, Extension of Euler’s beta function, J. Comput. Appl. Math., 78, 19-32 (1997) · Zbl 0944.33003 · doi:10.1016/S0377-0427(96)00102-1
[10] M. A. Chaudhry; A. Qadir; H. M. Srivastava; R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput., 159, 589-602 (2004) · Zbl 1067.33001 · doi:10.1016/j.amc.2003.09.017
[11] V. B. L. Chaurasia; S. C. Pandey, On the new computable solution of the generalized fractional kinetic equations involving the generalized function for the fractional calculus and related functions, Astrophys. Space Sci., 317, 213-219 (2008)
[12] Y. Chen, I. Petráš and D. Xue, Fractional Order Control, A Tutorial Proceedings of 2009 American Control Conference, St. Louis, MO, USA, 2009.
[13] J. Choi, P. Agarwal, S. Mathur and S. D. Purohit, Certain new integral formulas involving the generalized Bessel function, Bull.Korean Math. Soc., 51 (2014), 995-1003. Available from: http://dx.doi.org/10.5831/HMJ.2013.35.4.667 · Zbl 1303.33002
[14] J. Choi and P. Agarwal, A note on fractional integral operator associated with multiindex Mittag-Leffler functions, Filomat, 30 (2016), 1931-1939. Available from: https://www.jstor.org/stable/24898765 · Zbl 1460.26007
[15] A. Chouhan; S. Sarswat, On solution of generalized kinetic equation of fractional order, Int. J. Math. Sci. Appl., 2, 813-818 (2012)
[16] A. Chouhan; S. D. Purohit; S. Saraswat, An alternative method for solving generalized differential equations of fractional order, Kragujevac J. Math., 37, 299-306 (2013) · Zbl 1299.26011
[17] A. Erdelyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, In: Tables of integral transforms, McGraw-Hill, New York-Toronto-London, 1 (1954). · Zbl 0055.36401
[18] A. C. Escamilla, J. F. Gómez-Aguilar, D. Baleanu, T. Córdova-Fraga, R. F. Escobar-Jiménez, V. H. Olivares-Peregrino, M. M. A. Qurashi, Bateman-feshbach tikochinsky and caldirolakanai oscillators with new fractional differentiation, Entropy, 19 (2017), 1-13. Available from: https://doi.org/10.3390/e19020055
[19] A. C. Escamilla; F. Torres; J. F. Gómez-Aguilar; R. F. Escobar-Jiménez; G. V. Guerrero-Ramírez, On the trajectory tracking control for an scara robot manipulator in a fractional model driven by induction motors with pso tuning, Multibody Syst Dyn., 43, 257-277 (2018) · Zbl 1407.70014 · doi:10.1007/s11044-017-9586-3
[20] A. C. Escamilla; J. F. Gómez-Aguilar; L. Torres; R. F. Escobar-Jiménez, A numerical solution for a variable-order reaction diffusion model by using fractional derivatives with non-local and non-singular kernel, Physica A, 491, 406-424 (2018) · Zbl 1514.65100 · doi:10.1016/j.physa.2017.09.014
[21] J. F. Gómez-Aguilar, Novel analytical solutions of the fractional Drude model, Optik, 168 (2018), 728-740. Available from: https://doi.org/10.1016/j.ijleo.2018.04.107
[22] J. F. Gómez-Aguilar; H. Yépez-Martnez; R. F. Escobar-Jiménez; C. M. Astorga-Zaragozaand; J. Reyes-Reyes, Analytical and numerical solutions of electrical circuits described by fractional derivatives. Applied Mathematical Modelling, Applied Mathematical Modelling, 40, 9079-9094 (2016) · Zbl 1480.94053 · doi:10.1016/j.apm.2016.05.041
[23] J. F. Gómez-Aguilar, Chaos in a nonlinear bloch system with atangana abaleanu fractional derivatives, Numer. Methods Partial Differential Eq., 34, 1716-1738 (2018) · Zbl 1407.78028 · doi:10.1002/num.22219
[24] J. F. Gómez-Aguilar; H. Yépez-Martínez; J. Torres-Jiménez; T. Córdova-Fraga; R. F. Escobar-Jiménez; V. H. Olivares-Peregrino, Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel, Advances in Difference Equations, 68, 1-18 (2017) · Zbl 1422.35165 · doi:10.1186/s13662-017-1120-7
[25] V. G. Gupta; B. Sharma; F. B. M. Belgacem, On the solutions of generalized fractional kinetic equations, Appl. Math. Sci., 5, 899-910 (2011) · Zbl 1231.34008
[26] A. Gupta; C. L. Parihar, On solutions of generalized kinetic equations of fractional order, Bol. Soc. Paran. Mat., 32, 183-191 (2014) · Zbl 1412.34224 · doi:10.5269/bspm.v32i1.18146
[27] R. E. Gutiérrez, J. M. Rosário and J. T. Machado, Fractional order calculus: Basic concepts and engineering applications, Mathematical Problems in Engineering, 2010 (2010), Article ID 375858, 19 pages. · Zbl 1190.26002
[28] S. E. Hamamci, Stabilization using fractional order pi and pid controllers, Nonlinear Dynamics, 51, 329-343 (2008) · Zbl 1170.93023
[29] S. E. Hamamci; M. Koksal, Calculation of all stabilizing fractional-order pd controllers for integrating time delay systems, Computers and Mathematics with Applications, 59, 1621-1629 (2010) · Zbl 1189.93125 · doi:10.1016/j.camwa.2009.08.049
[30] H. J. Haubold; A. M. Mathai, The fractional kinetic equation and thermonuclear functions, Astrophys. Space Sci., 273, 53-63 (2000) · Zbl 1034.82048
[31] A. A. Kilbas; H. M. Srivastava; J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 204, 7-10 (2006) · Zbl 1092.45003
[32] A. A. Kilbas; N. Sebastian, Generalized fractional integration of Bessel function of the first kind, Int. Transf. Spec. Funct., 19, 869-883 (2008) · Zbl 1156.26004 · doi:10.1080/10652460802295978
[33] H. Kober, On fractional integrals and derivatives, Quart. J. Math. Oxford Ser., 11, 193-212 (1940) · JFM 66.0520.02 · doi:10.1093/qmath/os-11.1.193
[34] D. Kumar, S. D. Purohit, A. Secer and A. Atangana, On generalized fractional kinetic equations involving generalized Bessel, Mathematical Problems in Engineering, 2015 (2015), Article ID 289387, 7 pages. · Zbl 1394.34018
[35] A. M. Mathai, R. K. Saxena and H. J. Haubold, The H-Functions: Theory and Applications, Springer, New York, 2010. · Zbl 1181.33001
[36] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, USA, 1993. · Zbl 0789.26002
[37] G. M. Mittag-Leffler, Sur la representation analytique d’une branche uniforme d’une fonction monogene, Acta. Math., 29, 101-181 (1905) · JFM 36.0469.02 · doi:10.1007/BF02403200
[38] E. \( \ddot{O}\) zergin; M. A. \( \ddot{O}\) zarslan; A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235, 4601-4610 (2011) · Zbl 1218.33002 · doi:10.1016/j.cam.2010.04.019
[39] E. \( \ddot{O}\) zergin; M. A. \( \ddot{O}\) zarslan; A. Altin, Extension of gamma, beta and hypergeometric functions, J. Comput. Appl. Math., 235, 4601-4610 (2011) · Zbl 1218.33002 · doi:10.1016/j.cam.2010.04.019
[40] E.\( \ddot{O}\) zergin, Some Properties of Hypergeometric Functions, Ph.D. Thesis, Eastern Mediterranean University, North Cyprus, 2011. Available from: http://hdl.handle.net/11129/217 · Zbl 1279.33003
[41] R. K. Parmar, A new generalization of Gamma, Beta, hypergeometric and confluent hypergeometric functions, Matematiche (Catania), 68, 33-52 (2013) · Zbl 1182.26017
[42] I. Petráš, Stability of fractional-order systems with rational orders, A survey, Fractional Calculus & Applied Analysis, 12 (2009), 269-298. Available from: https://arXiv.org/pdf/0811.4102 · Zbl 0924.34008
[43] I. Podlubny, Fractional Differential Equations, New York: Academic Press. San Diego, CA, USA, 1999. · Zbl 0924.34008
[44] T. Pohlen, The Hadamard product and universal power series (Dissertation), \( Universit\begin{document \ddot{\rm{a}} \end{document}t Trier} \), (2009).
[45] Y. N. Rabotnov, Creep Problems in Structural Members, North-Holland Series in Applied Mathematics and Mechanics, 1969. · Zbl 0231.33001
[46] E. D. Rainville, Special Functions, Macmillan Company, New York, Reprinted by Chelsea Publishing Company, Bronx, New York, 1971. · Zbl 0231.33001 · doi:10.2478/s11534-014-0473-8
[47] J. J. Rosales; M. Guía; F. Gmez; F. Aguilar; J. Martínez, Two dimensional fractional projectile motion in a resisting medium, Cent. Eur. J. Phys., 12, 517-520 (2014) · doi:10.2478/s11534-014-0473-8
[48] B. Ross, Fractional Calculus and Its Applications, proceedings of the international conference held at the University of New Haven, 1974. · Zbl 0933.37029 · doi:10.1063/1.166272
[49] A. Saichev; M. Zaslavsky, Fractional kinetic equations: Solutions and applications, Chaos, 7, 753-764 (1997) · Zbl 0818.26003 · doi:10.1063/1.166272
[50] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, New York and London: Gordon and Breach Science Publishers, Yverdon, 1993. · Zbl 0818.26003
[51] R. K. Saxena; A. M. Mathai; H. J. Haubold, On fractional kinetic equations, Astrophys. Space Sci., 282, 281-287 (2002) · doi:10.1016/j.physa.2004.06.048
[52] R. K. Saxena; A. M. Mathai; H. J. Haubold, On generalized fractional kinetic equations, Physica A, 344, 657-664 (2004) · Zbl 1105.35309 · doi:10.1016/j.physa.2004.06.048
[53] R. K. Saxena; A. M. Mathai; H. J. Haubold, Solution of generalized fractional reaction-diffusion equations, Astrophys. Space Sci., 305, 305-313 (2006) · Zbl 1166.76051 · doi:10.1007/s10509-006-9191-z
[54] R. K. Saxena; S. L. Kalla, On the solutions of certain fractional kinetic equations, Appl. Math. Comput., 199, 504-511 (2008) · Zbl 1423.34058 · doi:10.1016/j.amc.2007.10.005
[55] G. Singh; P. Agarwal; M. Chand; S. Jain, Certain fractional kinetic equations involving generalized k-Bessel function, Transactions of A. Razmadze Mathematical Institute, 172, 559-570 (2018) · Zbl 0237.44001 · doi:10.1016/j.trmi.2018.03.001
[56] I. N. Sneddon, The Use of Integral Transforms, Tata McGraw-Hill, Delhi, 1979. · Zbl 1415.65148 · doi:10.1016/j.chaos.2018.06.032
[57] J. E. Solís-Pérez; J. F. Gómez-Aguilar; A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons and Fractals, 114, 175-185 (2018) · Zbl 1415.65148 · doi:10.1016/j.chaos.2018.06.032
[58] M. R. Spiegel, Theory and Problems of Laplace Transforms, Schaums Outline Series, McGraw-Hill, New York, 1965. · Zbl 1354.33002 · doi:10.1016/j.amc.2013.10.032
[59] H. M. Srivastava; A. Cetinkaya; I. O. Kiymaz, A certain generalized Pochhammer symbol and its applications to hypergeometric functions, Appl. Math. Comput., 226, 484-491 (2014) · Zbl 1239.33002 · doi:10.1016/j.amc.2013.10.032
[60] H. M. Srivastava and J. Choi, Zeta and q-Zeta Functions and Associated Series and Integrals, Elsevier, Inc., Amsterdam, 2012. · Zbl 1302.33007 · doi:10.1016/j.amc.2014.02.036
[61] R. Srivastava; N. E. Cho, Some extended Pochhammer symbols and their applications involving generalized hypergeometric polynomials, Appl. Math. Comput., 234, 277-285 (2014) · Zbl 1022.26012 · doi:10.1016/j.amc.2014.02.036
[62] H. M. Srivastava; R. K. Saxena, Operators of fractional integration and their applications, Applied Mathematics and Computation, 118, 1-52 (2001) · Zbl 1194.37163 · doi:10.1016/S0096-3003(99)00208-8
[63] G. M. Zaslavsky, Fractional kinetic equation for Hamiltonian, Chaos. Physica D, 76, 110-122 (1994) · Zbl 1194.37163 · doi:10.1016/0167-2789(94)90254-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.