×

A sharp interface Lagrangian-Eulerian method for flexible-body fluid-structure interaction. (English) Zbl 07696955

Summary: This paper introduces a sharp-interface approach to simulating fluid-structure interaction (FSI) involving flexible bodies described by general nonlinear material models and across a broad range of mass density ratios. This new flexible-body immersed Lagrangian-Eulerian (ILE) scheme extends our prior work on integrating partitioned and immersed approaches to rigid-body FSI. Our numerical approach incorporates the geometrical and domain solution flexibility of the immersed boundary (IB) method with an accuracy comparable to body-fitted approaches that sharply resolve flows and stresses up to the fluid-structure interface. Unlike many IB methods, our ILE formulation uses distinct momentum equations for the fluid and solid subregions with a Dirichlet-Neumann coupling strategy that connects fluid and solid subproblems through simple interface conditions. As in earlier work, we use approximate Lagrange multiplier forces to treat the kinematic interface conditions along the fluid-structure interface. This penalty approach simplifies the linear solvers needed by our formulation by introducing two representations of the fluid-structure interface, one that moves with the fluid and another that moves with the structure, that are connected by stiff springs. This approach also enables the use of multi-rate time stepping, which allows us to use different time step sizes for the fluid and structure subproblems. Our fluid solver relies on an immersed interface method (IIM) for discrete surfaces to impose stress jump conditions along complex interfaces while enabling the use of fast structured-grid solvers for the incompressible Navier-Stokes equations. The dynamics of the volumetric structural mesh are determined using a standard finite element approach to large-deformation nonlinear elasticity via a nearly incompressible solid mechanics formulation. This formulation also readily accommodates compressible structures with a constant total volume, and it can handle fully compressible solid structures for cases in which at least part of the solid boundary does not contact the incompressible fluid. Selected grid convergence studies demonstrate second-order convergence in volume conservation and in the pointwise discrepancies between corresponding positions of the two interface representations as well as between first and second-order convergence in the structural displacements. The time stepping scheme is also demonstrated to yield second-order convergence. To assess and validate the robustness and accuracy of the new algorithm, comparisons are made with computational and experimental FSI benchmarks. Test cases include both smooth and sharp geometries in various flow conditions. We also demonstrate the capabilities of this methodology by applying it to model the transport and capture of a geometrically realistic, deformable blood clot in an inferior vena cava filter.

MSC:

76Mxx Basic methods in fluid mechanics
74Fxx Coupling of solid mechanics with other effects
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

hypre; libMesh; SAMRAI; PETSc

References:

[1] Nobile, F.; Formaggia, L., A stability analysis for the arbitrary Lagrangian Eulerian formulation with finite elements, East-West J. Numer. Math., 7, 2, 105-132 (1999) · Zbl 0942.65113
[2] Farhat, C.; Geuzaine, P.; Grandmont, C., The discrete geometric conservation law and the nonlinear stability of ALE schemes for the solution of flow problems on moving grids, J. Comput. Phys., 174, 2, 669-694 (2001) · Zbl 1157.76372
[3] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons · Zbl 1378.65009
[4] Degand, C.; Farhat, C., A three-dimensional torsional spring analogy method for unstructured dynamic meshes, Comput. Struct., 80, 3-4, 305-316 (2002)
[5] Luke, E.; Collins, E.; Blades, E., A fast mesh deformation method using explicit interpolation, J. Comput. Phys., 231, 2, 586-601 (2012) · Zbl 1426.76550
[6] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[7] Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25, 3, 220-252 (1977) · Zbl 0403.76100
[8] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[9] Griffith, B. E.; Patankar, N. A., Immersed methods for fluid-structure interaction, Annu. Rev. Fluid Mech., 52, 421-448 (2020) · Zbl 1439.76140
[10] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[11] Sotiropoulos, F.; Yang, X., Immersed boundary methods for simulating fluid-structure interaction, Prog. Aerosp. Sci., 65, 1-21 (2014)
[12] Kolahdouz, E. M.; Bhalla, A. P.; Scotten, L. N.; Craven, B. A.; Griffith, B. E., A sharp interface Lagrangian-Eulerian method for rigid-body fluid-structure interaction, J. Comput. Phys., 443, Article 110442 pp. (2021) · Zbl 07515403
[13] McQueen, D. M.; Peskin, C. S., A three-dimensional computer model of the human heart for studying cardiac fluid dynamics, Comput. Graph., 34, 1, 56-60 (2000)
[14] McQueen, D. M.; Peskin, C. S., Heart simulation by an immersed boundary method with formal second-order accuracy and reduced numerical viscosity, (Mechanics for a New Millennium (2001), Springer), 429-444
[15] Griffith, B. E.; Peskin, C. S., On the order of accuracy of the immersed boundary method: higher order convergence rates for sufficiently smooth problems, J. Comput. Phys., 208, 1, 75-105 (2005) · Zbl 1115.76386
[16] Griffith, B. E.; Hornung, R. D.; McQueen, D. M.; Peskin, C. S., An adaptive, formally second order accurate version of the immersed boundary method, J. Comput. Phys., 223, 1, 10-49 (2007) · Zbl 1163.76041
[17] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, W. K., Immersed finite element method, Comput. Methods Appl. Mech. Eng., 193, 21-22, 2051-2067 (2004) · Zbl 1067.76576
[18] Zhang, L. T.; Gay, M., Immersed finite element method for fluid-structure interactions, J. Fluids Struct., 23, 6, 839-857 (2007)
[19] Boffi, D.; Gastaldi, L.; Heltai, L.; Peskin, C. S., On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Eng., 197, 25-28, 2210-2231 (2008) · Zbl 1158.74523
[20] Gil, A. J.; Carreno, A. A.; Bonet, J.; Hassan, O., The immersed structural potential method for haemodynamic applications, J. Comput. Phys., 229, 22, 8613-8641 (2010) · Zbl 1198.92010
[21] Gil, A. J.; Carreno, A. A.; Bonet, J.; Hassan, O., An enhanced immersed structural potential method for fluid-structure interaction, J. Comput. Phys., 250, 178-205 (2013) · Zbl 1349.76608
[22] Devendran, D.; Peskin, C. S., An immersed boundary energy-based method for incompressible viscoelasticity, J. Comput. Phys., 231, 14, 4613-4642 (2012) · Zbl 1245.76099
[23] Griffith, B. E.; Luo, X. Y., Hybrid finite difference/finite element version of the immersed boundary method, Int. J. Numer. Methods Biomed. Eng., 33, 11 (2017), e2888
[24] Wells, D.; Vadala-Roth, B.; Lee, J. H.; Griffith, B. E., A nodal immersed finite element-finite difference method (2021)
[25] Baaijens, F. P., A fictitious domain/mortar element method for fluid-structure interaction, Int. J. Numer. Methods Fluids, 35, 7, 743-761 (2001) · Zbl 0979.76044
[26] Hesch, C.; Gil, A. J.; Carreno, A. A.; Bonet, J.; Betsch, P., A mortar approach for fluid-structure interaction problems: immersed strategies for deformable and rigid bodies, Comput. Methods Appl. Mech. Eng., 278, 853-882 (2014) · Zbl 1423.74889
[27] Nestola, M. G.C.; Becsek, B.; Zolfaghari, H.; Zulian, P.; De Marinis, D.; Krause, R.; Obrist, D., An immersed boundary method for fluid-structure interaction based on variational transfer, J. Comput. Phys., 398, Article 108884 pp. (2019) · Zbl 1453.74078
[28] Glowinski, R.; Pan, T.-W.; Periaux, J., A fictitious domain method for Dirichlet problem and applications, Comput. Methods Appl. Mech. Eng., 111, 3-4, 283-303 (1994) · Zbl 0845.73078
[29] Glowinski, R.; Pan, T.-W.; Hesla, T. I.; Joseph, D. D., A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J. Multiph. Flow, 25, 5, 755-794 (1999) · Zbl 1137.76592
[30] Van Loon, R.; Anderson, P. D.; De Hart, J.; Baaijens, F. P., A combined fictitious domain/adaptive meshing method for fluid-structure interaction in heart valves, Int. J. Numer. Methods Fluids, 46, 5, 533-544 (2004) · Zbl 1060.76582
[31] Yu, Z., A DLM/FD method for fluid/flexible-body interactions, J. Comput. Phys., 207, 1, 1-27 (2005) · Zbl 1177.76304
[32] Bhalla, A. P.S.; Bale, R.; Griffith, B. E.; Patankar, N. A., A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies, J. Comput. Phys., 250, 446-476 (2013) · Zbl 1349.65403
[33] Boffi, D.; Cavallini, N.; Gastaldi, L., The finite element immersed boundary method with distributed Lagrange multiplier, SIAM J. Numer. Anal., 53, 6, 2584-2604 (2015) · Zbl 1330.65147
[34] Kadapa, C.; Dettmer, W.; Perić, D., A fictitious domain/distributed Lagrange multiplier based fluid-structure interaction scheme with hierarchical B-spline grids, Comput. Methods Appl. Mech. Eng., 301, 1-27 (2016) · Zbl 1423.76243
[35] de Tullio, M. D.; Pascazio, G., A moving-least-squares immersed boundary method for simulating the fluid-structure interaction of elastic bodies with arbitrary thickness, J. Comput. Phys., 325, 201-225 (2016) · Zbl 1375.74031
[36] Vanella, M.; Balaras, E., Direct Lagrangian forcing methods based on moving least squares, (Immersed Boundary Method (2020), Springer), 45-79 · Zbl 1512.76092
[37] Spandan, V.; Lohse, D.; de Tullio, M. D.; Verzicco, R., A fast moving least squares approximation with adaptive Lagrangian mesh refinement for large scale immersed boundary simulations, J. Comput. Phys., 375, 228-239 (2018) · Zbl 1416.76230
[38] Sugiyama, K.; Ii, S.; Takeuchi, S.; Takagi, S.; Matsumoto, Y., A full Eulerian finite difference approach for solving fluid-structure coupling problems, J. Comput. Phys., 230, 3, 596-627 (2011) · Zbl 1283.74010
[39] Valkov, B.; Rycroft, C. H.; Kamrin, K., Eulerian method for multiphase interactions of soft solid bodies in fluids, J. Appl. Mech., 82, 4, Article 041011 pp. (04 2015)
[40] Rycroft, C. H.; Wu, C.-H.; Yu, Y.; Kamrin, K., Reference map technique for incompressible fluid-structure interaction, J. Fluid Mech., 898, A9 (2020) · Zbl 1460.76177
[41] Richter, T., A fully Eulerian formulation for fluid-structure-interaction problems, J. Comput. Phys., 233, 227-240 (2013)
[42] Richter, T.; Wick, T., Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Comput. Methods Appl. Mech. Eng., 199, 41-44, 2633-2642 (2010) · Zbl 1231.74436
[43] Mayer, U. M.; Popp, A.; Gerstenberger, A.; Wall, W. A., 3D fluid-structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach, Comput. Mech., 46, 1, 53-67 (2010) · Zbl 1301.74018
[44] Burman, E.; Fernández, M. A., An unfitted Nitsche method for incompressible fluid-structure interaction using overlapping meshes, Comput. Methods Appl. Mech. Eng., 279, 497-514 (2014) · Zbl 1423.74867
[45] Zonca, S.; Vergara, C.; Formaggia, L., An unfitted formulation for the interaction of an incompressible fluid with a thick structure via an XFEM/DG approach, SIAM J. Sci. Comput., 40, 1, B59-B84 (2018) · Zbl 1395.74087
[46] Wall, W. A.; Gerstenberger, A.; Gamnitzer, P.; Förster, C.; Ramm, E., Large deformation fluid-structure interaction-advances in ALE methods and new fixed grid approaches, (Fluid-Structure Interaction (2006), Springer), 195-232 · Zbl 1323.74097
[47] Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., Deforming composite grids for solving fluid structure problems, J. Comput. Phys., 231, 9, 3518-3547 (2012) · Zbl 1402.74030
[48] Miller, S. T.; Campbell, R.; Elsworth, C.; Pitt, J.; Boger, D., An overset grid method for fluid-structure interaction, World J. Mech., 4, 7 (2014)
[49] Serino, D. A.; Banks, J. W.; Henshaw, W. D.; Schwendeman, D. W., A stable added-mass partitioned (AMP) algorithm for elastic solids and incompressible flow, J. Comput. Phys., 399, Article 108923 pp. (2019) · Zbl 1453.74030
[50] Mittal, R.; Dong, H.; Bozkurttas, M.; Najjar, F.; Vargas, A.; Von Loebbecke, A., A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries, J. Comput. Phys., 227, 10, 4825-4852 (2008) · Zbl 1388.76263
[51] Massing, A.; Larson, M.; Logg, A.; Rognes, M., A Nitsche-based cut finite element method for a fluid-structure interaction problem, Commun. Appl. Math. Comput. Sci., 10, 2, 97-120 (2015) · Zbl 1326.74122
[52] Schott, B.; Ager, C.; Wall, W. A., Monolithic cut finite element-based approaches for fluid-structure interaction, Int. J. Numer. Methods Eng., 119, 8, 757-796 (2019) · Zbl 07863930
[53] Kolahdouz, E. M.; Bhalla, A. P.S.; Craven, B. A.; Griffith, B. E., An immersed interface method for discrete surfaces, J. Comput. Phys., 400, Article 108854 pp. (2020) · Zbl 1453.76075
[54] Xu, S.; Wang, Z. J., An immersed interface method for simulating the interaction of a fluid with moving boundaries, J. Comput. Phys., 216, 2, 454-493 (2006) · Zbl 1220.76058
[55] Xu, S., The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow, J. Comput. Phys., 227, 10, 5045-5071 (2008) · Zbl 1388.76280
[56] Le, D.-V.; Khoo, B. C.; Peraire, J., An immersed interface method for viscous incompressible flows involving rigid and flexible boundaries, J. Comput. Phys., 220, 1, 109-138 (2006) · Zbl 1158.74349
[57] Tan, Z.; Le, D.-V.; Lim, K. M.; Khoo, B., An immersed interface method for the incompressible Navier-Stokes equations with discontinuous viscosity across the interface, SIAM J. Sci. Comput., 31, 3, 1798-1819 (2009) · Zbl 1317.76065
[58] Tan, Z.; Lim, K.; Khoo, B., A level set-based immersed interface method for solving incompressible viscous flows with the prescribed velocity at the boundary, Int. J. Numer. Methods Fluids, 62, 3, 267-290 (2010) · Zbl 1377.76010
[59] Thekkethil, N.; Sharma, A., Level set function-based immersed interface method and benchmark solutions for fluid flexible-structure interaction, Int. J. Numer. Methods Fluids, 91, 3, 134-157 (2019)
[60] Layton, A. T., Using integral equations and the immersed interface method to solve immersed boundary problems with stiff forces, Comput. Fluids, 38, 2, 266-272 (2009) · Zbl 1237.76123
[61] Zhao, H.; Freund, J. B.; Moser, R. D., A fixed-mesh method for incompressible flow-structure systems with finite solid deformations, J. Comput. Phys., 227, 6, 3114-3140 (2008) · Zbl 1329.74313
[62] Turek, S.; Hron, J., Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, (Fluid-Structure Interaction (2006), Springer), 371-385 · Zbl 1323.76049
[63] Küttler, U.; Förster, C.; Wall, W. A., A solution for the incompressibility dilemma in partitioned fluid-structure interaction with pure Dirichlet fluid domains, Comput. Mech., 38, 4, 417-429 (2006) · Zbl 1166.74046
[64] Hessenthaler, A.; Gaddum, N.; Holub, O.; Sinkus, R.; Röhrle, O.; Nordsletten, D., Experiment for validation of fluid-structure interaction models and algorithms, Int. J. Numer. Methods Biomed. Eng., 33, 9, Article e2848 pp. (2017)
[65] Riley, J.; Price, N.; Saaid, H.; Good, B.; Aycock, K.; Craven, B.; Manning, K., In vitro clot trapping efficiency of the FDA generic inferior vena cava filter in an anatomical model: an experimental fluid-structure interaction benchmark, Cardiovasc. Eng. Technol., 1-14 (2021)
[66] Förster, C.; Wall, W. A.; Ramm, E., Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows, Comput. Methods Appl. Mech. Eng., 196, 7, 1278-1293 (2007) · Zbl 1173.74418
[67] Liu, J.; Jaiman, R. K.; Gurugubelli, P. S., A stable second-order scheme for fluid-structure interaction with strong added-mass effects, J. Comput. Phys., 270, 687-710 (2014) · Zbl 1349.76236
[68] Young, Y. L.; Chae, E. J.; Akcabay, D. T., Hybrid algorithm for modeling of fluid-structure interaction in incompressible, viscous flows, Acta Mech. Sin., 28, 4, 1030-1041 (2012) · Zbl 1293.76101
[69] Sansour, C., On the physical assumptions underlying the volumetric-isochoric split and the case of anisotropy, Eur. J. Mech. A, Solids, 27, 1, 28-39 (2008) · Zbl 1129.74009
[70] Vadala-Roth, B.; Acharya, S.; Patankar, N. A.; Rossi, S.; Griffith, B. E., Stabilization approaches for the hyperelastic immersed boundary method for problems of large-deformation incompressible elasticity, Comput. Methods Appl. Mech. Eng., 365, Article 112978 pp. (2020) · Zbl 1442.74035
[71] Flory, P., Thermodynamic relations for high elastic materials, Trans. Faraday Soc., 57, 829-838 (1961)
[72] Malkus, D. S.; Hughes, T. J., Mixed finite element methods-reduced and selective integration techniques: a unification of concepts, Comput. Methods Appl. Mech. Eng., 15, 1, 63-81 (1978) · Zbl 0381.73075
[73] Griffith, B. E., An accurate and efficient method for the incompressible Navier-Stokes equations using the projection method as a preconditioner, J. Comput. Phys., 228, 20, 7565-7595 (2009) · Zbl 1391.76474
[74] Griffith, B. E., Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions, Int. J. Numer. Methods Biomed. Eng., 28, 3, 317-345 (2012) · Zbl 1243.92017
[75] Griffith, B. E., On the volume conservation of the immersed boundary method, Commun. Comput. Phys., 12, 2, 401-432 (2012) · Zbl 1373.74098
[76] Strang, G., On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 3, 506-517 (1968) · Zbl 0184.38503
[77] Hua, M.; Peskin, C. S., An analysis of the numerical stability of the immersed boundary method, J. Comput. Phys., 467, Article 111435 pp. (2022) · Zbl 07568539
[78] IBAMR: an adaptive and distributed-memory parallel implementation of the immersed boundary method
[79] SAMRAI: structured adaptive mesh refinement application infrastructure
[80] Hornung, R. D.; Kohn, S. R., Managing application complexity in the SAMRAI object-oriented framework, Concurr. Comput., 14, 5, 347-368 (2002) · Zbl 1008.68527
[81] Balay, S.; Abhyankar, S.; Adams, M. F.; Benson, S.; Brown, J.; Brune, P.; Buschelman, K.; Constantinescu, E. M.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Hapla, V.; Isaac, T.; Jolivet, P.; Karpeev, D.; Kaushik, D.; Knepley, M. G.; Kong, F.; Kruger, S.; May, D. A.; McInnes, L. C.; Mills, R. T.; Mitchell, L.; Munson, T.; Roman, J. E.; Rupp, K.; Sanan, P.; Sarich, J.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H.; Zhang, J., PETSc Web page (2021)
[82] hypre: High performance preconditioners · Zbl 1056.65046
[83] Falgout, R. D.; Yang, U. M., hypre: a library of high performance preconditioners, (International Conference on Computational Science (2002), Springer), 632-641 · Zbl 1056.65046
[84] Kirk, B. S.; Peterson, J. W.; Stogner, R. H.; Carey, G. F., libmesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations, Eng. Comput., 22, 3, 237-254 (2006)
[85] Wang, X.; Zhang, L. T., Interpolation functions in the immersed boundary and finite element methods, Comput. Mech., 45, 4, 321-334 (2010) · Zbl 1362.74035
[86] Roy, S.; Heltai, L.; Costanzo, F., Benchmarking the immersed finite element method for fluid-structure interaction problems, Comput. Math. Appl., 69, 10, 1167-1188 (2015) · Zbl 1443.65221
[87] Zhang, Z.-Q.; Liu, G.; Khoo, B. C., A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems, Comput. Mech., 51, 2, 129-150 (2013) · Zbl 1312.74049
[88] Lee, J. H.; Griffith, B. E., On the Lagrangian-Eulerian coupling in the immersed finite element/difference method, J. Comput. Phys., 457, Article 111042 pp. (2022) · Zbl 1515.76098
[89] Bhardwaj, R.; Mittal, R., Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation, AIAA J., 50, 7, 1638-1642 (2012)
[90] Tian, F.-B.; Dai, H.; Luo, H.; Doyle, J. F.; Rousseau, B., Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems, J. Comput. Phys., 258, 451-469 (2014) · Zbl 1349.76274
[91] Akbay, M.; Schroeder, C.; Shinar, T., Boundary pressure projection for partitioned solution of fluid-structure interaction with incompressible Dirichlet fluid domains, J. Comput. Phys., 425, Article 109894 pp. (2021) · Zbl 07508492
[92] Fernández, M. A.; Landajuela, M.; Vidrascu, M., Fully decoupled time-marching schemes for incompressible fluid/thin-walled structure interaction, J. Comput. Phys., 297, 156-181 (2015) · Zbl 1349.76201
[93] Kamensky, D.; Hsu, M.-C.; Schillinger, D.; Evans, J. A.; Aggarwal, A.; Bazilevs, Y.; Sacks, M. S.; Hughes, T. J., An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves, Comput. Methods Appl. Mech. Eng., 284, 1005-1053 (2015) · Zbl 1423.74273
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.