×

3D fluid-structure-contact interaction based on a combined XFEM FSI and dual mortar contact approach. (English) Zbl 1301.74018

Summary: Finite deformation contact of flexible solids embedded in fluid flows occurs in a wide range of engineering scenarios. We propose a novel three-dimensional finite element approach in order to tackle this problem class. The proposed method consists of a dual mortar contact formulation, which is algorithmically integrated into an eXtended finite element method (XFEM) fluid-structure interaction approach. The combined XFEM fluid-structure-contact interaction method (FSCI) allows to compute contact of arbitrarily moving and deforming structures embedded in an arbitrary flow field. In this paper, the fluid is described by instationary incompressible Navier-Stokes equations. An exact fluid-structure interface representation permits to capture flow patterns around contacting structures very accurately as well as to simulate dry contact between structures. No restrictions arise for the structural and the contact formulation. We derive a linearized monolithic system of equations, which contains the fluid formulation, the structural formulation, the contact formulation as well as the coupling conditions at the fluid-structure interface. The linearized system may be solved either by partitioned or by monolithic fluid-structure coupling algorithms. Two numerical examples are presented to illustrate the capability of the proposed fluid-structure-contact interaction approach.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
76M10 Finite element methods applied to problems in fluid mechanics
76Z05 Physiological flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Astorino M, Gerbeau J-F, Pantz O, Traor K-F (2009) Fluid–structure interaction and multi-body contact: application to aortic valves. Comput Methods Appl Mech Eng 198(45–46): 3603–3612 · Zbl 1229.74095 · doi:10.1016/j.cma.2008.09.012
[2] Belytschko T, Black T (1999) Elastic crack growth in finite elements with minimal remeshing. Int J Numer Methods Eng 45(5): 601–620 · Zbl 0943.74061 · doi:10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
[3] Chung J, Hulbert GM (1993) A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-alpha method. J Appl Mech 60: 371–375 · Zbl 0775.73337 · doi:10.1115/1.2900803
[4] Diniz dos Santos N, Gerbeau J-F, Bourgat J-F (2008) A partitioned fluid–structure algorithm for elastic thin valves with contact. Comput Methods Appl Mech Eng 197(19–20): 1750–1761 · Zbl 1194.74383 · doi:10.1016/j.cma.2007.03.019
[5] Förster Ch, Wall WA, Ramm E (1999) On the geometric conservation law in transient flow calculations on deforming domains. Int J Numer Methods Fluids 50: 1369–1379 · Zbl 1097.76049 · doi:10.1002/fld.1093
[6] Gee MW, Küttler U, Wall WA (2009) Truly monolithic algebraic multigrid for fluid–structure interaction. Int J Numer Methods Eng (submitted)
[7] Gerstenberger A, Wall WA (2008) Enhancement of fixed-grid methods towards complex fluid–structure interaction applications. Int J Numer Methods Fluids 57(9): 1227–1248 · Zbl 1338.74038 · doi:10.1002/fld.1782
[8] Gerstenberger A, Wall WA (2008) An extended finite element method/Lagrange multiplier based approach for fluid–structure interaction. Comput Methods Appl Mech Eng 197: 1699–1714 · Zbl 1194.76117 · doi:10.1016/j.cma.2007.07.002
[9] Gerstenberger A, Wall WA (2009) An embedded dirichlet formulation for 3d continua. Int J Numer Methods Eng (accepted) · Zbl 1188.74056
[10] Gerstenberger A, Wall WA (2010) A fixed-grid approach to three-dimensional fluid–structure interaction (in preparation)
[11] Gitterle M, Popp A, Gee MW, Wall WA (2010) Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization. Int J Numer Methods Eng (accepted) · Zbl 1202.74121
[12] Hartmann S, Brunssen S, Ramm E, Wohlmuth B (2007) Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy. Int J Numer Methods Eng 70(8): 883–912 · Zbl 1194.74218 · doi:10.1002/nme.1894
[13] Hintermüller M, Ito K, Kunisch K (2002) The primal-dual active set strategy as a semismooth Newton method. SIAM J Optim 13(3): 865–888 · Zbl 1080.90074 · doi:10.1137/S1052623401383558
[14] Hüeber S, Wohlmuth B (2005) A primal-dual active set strategy for non-linear multibody contact problems. Comput Methods Appl Mech Eng 194(27–29): 3147–3166 · Zbl 1093.74056 · doi:10.1016/j.cma.2004.08.006
[15] Küttler U, Gee MW, Förster Ch, Comerford A, Wall WA (2009) Coupling strategies for biomedical fluid–structure interaction problems. Int J Numer Methods Biomed Eng (accepted)
[16] Laursen TA (2002) Computational contact and impact mechanics. Springer, Berlin · Zbl 0996.74003
[17] Mayer UM, Gerstenberger A, Wall WA (2009) Interface handling for three-dimensional higher-order XFEM computations in fluid–structure interaction. Int J Numer Methods Eng 79: 846– 869 · Zbl 1171.74447 · doi:10.1002/nme.2600
[18] Mayer UM, Wall WA (2010) A finite element approach to 3D intermolecular & surface interaction of multiple flexible mesoscopic structures in fluid flow (in preparation)
[19] Mayer UM, Wall WA (2010) Efficient parallel search algorithms in (mesoscopic) fluid–structure interaction (in preparation)
[20] Moes N, Dolbow J, Belytschko T (1999) A finite element method for crack growth without remeshing. Int J Numer Methods Eng 46: 131–150 · Zbl 0955.74066 · doi:10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
[21] Popp A, Gee MW, Wall WA (2009) A finite deformation mortar contact formulation using a primal-dual active set strategy. Int J Numer Methods Eng 79: 1354–1391 · Zbl 1176.74133 · doi:10.1002/nme.2614
[22] Popp A, Gitterle M, Gee MW, Wall WA (2010) A dual mortar approach for 3d finite deformation contact with consistent linearization. Int J Numer Methods Eng (accepted) · Zbl 1202.74183
[23] Puso MA (2004) A 3D mortar method for solid mechanics. Int J Numer Methods Eng 59(3): 315–336 · Zbl 1047.74065 · doi:10.1002/nme.865
[24] Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193(6–8): 601–629 · Zbl 1060.74636 · doi:10.1016/j.cma.2003.10.010
[25] Puso MA, Laursen TA (2004) A mortar segment-to-segment frictional contact method for large deformations. Comput Methods Appl Mech Eng 193(45–47): 4891–4913 · Zbl 1112.74535 · doi:10.1016/j.cma.2004.06.001
[26] Qi L, Sun J (1993) A nonsmooth version of Newton’s method. Math Program 58(1): 353–367 · Zbl 0780.90090 · doi:10.1007/BF01581275
[27] Sathe S, Tezduyar TE (2008) Modeling of fluid–structure interactions with the space–time finite elements: contact problems. Comput Mech 43(1): 51–60 · Zbl 1297.74129 · doi:10.1007/s00466-008-0299-6
[28] Tezduyar TE, Behr M, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces–the deforming-spatial-domain/space–time procedure. I. The concept and the prelimianry numerical tests. Comput Methods Appl Mech Eng 94: 339–351 · Zbl 0745.76044 · doi:10.1016/0045-7825(92)90059-S
[29] Tezduyar TE, Behr M, Mittal S, Liou J (1992) A new strategy for finite element computations involving moving boundaries and interfaces – the deforming-spatial-domain/space-time procedure. II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput Methods Appl Mech Eng 94: 353–371 · Zbl 0745.76045 · doi:10.1016/0045-7825(92)90060-W
[30] Tezduyar TE, Sathe S (2007) Modelling of fluid–structure interactions with the space-time finite elements: solution techniques. Int J Numer Methods Fluids 54(6-8): 855–900 · Zbl 1144.74044 · doi:10.1002/fld.1430
[31] van Loon R, Anderson PD, van de Vosse FN (2006) A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J Comput Phys 217(2): 806–823 · Zbl 1099.74044 · doi:10.1016/j.jcp.2006.01.032
[32] Wall WA, Gamnitzer P, Gerstenberger A (2008) Fluid–structure interaction approaches on fixed grids based on two different domain decomposition ideas. Int J Comput Fluid Dyn 22(6): 411–427 · Zbl 1184.76732 · doi:10.1080/10618560802208567
[33] Wall WA, Gee MW (2009) Baci–a multiphysics simulation environment. Technical report, Technische Universität München
[34] Wall WA, Gerstenberger A, Mayer UM (2008) Advances in fixed-grid fluid structure interaction. In: ECCOMAS multidisciplinary jubilee symposium–new computational challenges in materials, structure and fluids 14: 235–249
[35] Wohlmuth BI (2000) A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal 38(3): 989–1012 · Zbl 0974.65105 · doi:10.1137/S0036142999350929
[36] Wohlmuth BI (2001) Discretization methods and iterative solvers based on domain decomposition. Springer, Berlin · Zbl 0966.65097
[37] Wriggers P (2002) Computational contact mechanics. John Wiley & Sons, New York · Zbl 1104.74002
[38] Yang B, Laursen TA (2009) A mortar-finite element approach to lubricated contact problems. Comput Methods Appl Mech Eng 198: 3656–3669 · Zbl 1230.74204 · doi:10.1016/j.cma.2009.07.008
[39] Yang B, Laursen TA, Meng X (2005) Two dimensional mortar contact methods for large deformation frictional sliding. Int J Numer Methods Eng 62(9): 1183–1225 · Zbl 1161.74497 · doi:10.1002/nme.1222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.