×

Approximating common fixed point of three multivalued mappings satisfying condition (\(E\)) in hyperbolic spaces. (English) Zbl 1529.65007

Summary: In this article, we introduce the hyperbolic space version of a faster iterative algorithm. The proposed iterative algorithm is used to approximate the common fixed point of three multi-valued almost contraction mappings and three multi-valued mappings satisfying condition (\(E\)) in hyperbolic spaces. The concepts weak \(w^2\)-stability involving three multi-valued almost contraction mappings are considered. Several strong and \(\triangle\)-convergence theorems of the suggested algorithm are proved in hyperbolic spaces. We provide an example to compare the performance of the proposed method with some well-known methods in the literature.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
54H25 Fixed-point and coincidence theorems (topological aspects)
54C60 Set-valued maps in general topology
54E40 Special maps on metric spaces

References:

[1] R.P. Agarwal, D. O’Regan and D.R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8(1) (2007), 61-79. · Zbl 1134.47047
[2] S. Aggarwal, I. Uddin and S. Mujahid, Convergence theorems for SP -iteration scheme in a ordered hyperbolic metric space , Nonlinear Funct Anal. Appl., 26(5) (2021), 961-969. · Zbl 1482.54047
[3] J. Ahmad, K. Ullah and M. Arshad, Convergence weak w 2 stability, and data dependence results for the F iterative scheme in hyperbolic spaces, Nume. Algo., 91 (2022), 1755-1778, https://doi.org/10.1007/s11075-022-01321-y. · Zbl 07621831 · doi:10.1007/s11075-022-01321-y
[4] J. Ali, M. Jubair and F. Ali, Stability and convergence of F iterative scheme with an application to the fractional differential equation, Engineering with Computers, (2020), https://doi.org/10.1007/s00366-020-01172-y. · doi:10.1007/s00366-020-01172-y
[5] V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 9 (2004), 43-53. · Zbl 1078.47042
[6] M. Berinde and V. Berinde, On a general class of multivalued weakly Picard mappings, J. Math. Anal. Appl., 326 (2007), 772-782. · Zbl 1117.47039
[7] T. Cardinali and P. Rubbioni, A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory, 11(1) (2010), 3-10. · Zbl 1190.54028
[8] S. Chang, G. Wanga, L. Wanga, Y.K. Tang and Z.L. Mab, -convergence theorems for multivalued nonexpansive, Appl. Math. Comput., 249 (2014), 535-540. · Zbl 1338.47083
[9] P. Chuadchawnay, A. Farajzadehz and A. Kaewcharoeny, On convergence theorems for two generalized nonexpansive multivalued mappings in hyperbolic spaces, Thai J. Math., 17(2) (2019), 445-461. · Zbl 1459.54026
[10] R. Chugh, V. Kumar and S. Kumar, Strong convergence of a new three step iterative scheme in Banach spaces, Amer. J. Comput. Math., 2 (2012), 345-357.
[11] M. Eslamian and A. Abkar, One-step iterative process for finite family of multivalued mappings, Math. Comput. Mod., 54(1-2) (2011), 105-111. · Zbl 1225.65059
[12] J. García-Falset, E. Llorens-Fuster and T. Suzuki, Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl., 375 (2011), 185-195. · Zbl 1214.47047
[13] K. Goebel and W.A. Kirk, Iteration processes for nonexpansive mappings Topological Methods in Nonlinear Functional Analysis. In: Singh SP, Thomeier S, Watson B (eds.) Contemp. Math. Amer. Math. Soc. AMS, Providence, RI., 21 (1983), 115-123. · Zbl 0525.47040
[14] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York, 1984. · Zbl 0537.46001
[15] M. Imdad and S. Dashputre, Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10 (2016), 131-138, DOI 10.1007/s40096-016-0187-8. · Zbl 1368.47063 · doi:10.1007/s40096-016-0187-8
[16] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59(1) (1976), 65-71. · Zbl 0352.47024
[17] A.R Khan, H. Fukhar-ud-din and M.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012(54) (2012). · Zbl 1345.54055
[18] J.K. Kim, S. Dashputre, Padmavati and K. Sakure, Generalized α-nonexpansive map-pings in hyperbolic spaces, Nonlinear Funct Anal. Appl., 27(3) (2022), 449-469. · Zbl 07589358
[19] J.K. Kim, R.P. Pathak, S. Dashputre, S.D. Diwan and R. Gupta, Convergence theorems for generalized nonexpansive multivalued mappings in hyperbolic spaces, SpringerPlus, 5 (2016), 912, DOI 10.1186/s40064-016-2557-y. · doi:10.1186/s40064-016-2557-y
[20] U. Kohlenbach, Some logical metatheorems with applications in functional analysis, Tran. Amer. Math. Soc., 357(1) (2005), 89-128. · Zbl 1079.03046
[21] L. Leuştean, A quadratic rate of asymptotic regularity for CAT(0) space, J. Math. Anal. Appl., 325(1) (2007), 386-399. · Zbl 1103.03057
[22] W.R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506-510. · Zbl 0050.11603
[23] J. Markin, Continuous dependence of fixed point sets, Proc. Amer. Math. Soc., 38(1973), 545-547. · Zbl 0278.47036
[24] S.B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488. · Zbl 0187.45002
[25] M.A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251(1) (2000), 217-229. · Zbl 0964.49007
[26] A.E. Ofem, J.A. Abuchu, R. George, G.C. Ugwunnadi and O.K. Narain, Some New Results on Convergence, Weak w2-Stability and Data Dependence of Two Multivalued Almost Contractive Mappings in Hyperbolic Spaces, Mathematics, 10(20) (2022), 3720.
[27] A.E. Ofem, J.A. Abuchu, G.C. Ugwunnadi, H. Isik and O.K. Narian, On a four-step iterative algorithm and its application to delay integral equations in hyperbolic spaces, Rend. Circ. Mat. Palermo, II. Ser., (2023), https://doi.org/10.1007/s12215-023-00908-1. · Zbl 1534.65082 · doi:10.1007/s12215-023-00908-1
[28] A.E. Ofem, H. Isik, G.C. Ugwunnadi, R. George and O.K. Narain, Approximating the solution of a nonlinear delay integral equation by an efficient iterative algorithm in hyperbolic spaces, AIMS Mathematics, 8(7) (2023), 14919-14950.
[29] A.E. Ofem, U.E. Udofia and D.I. Igbokwe, A robust iterative approach for solving non-linear Volterra Delay integro-differential equations, Ural Math. J., 7(2) (2021), 59-85. · Zbl 07504263
[30] G.A. Okeke, A.E. Ofem, T. Abdeljawad, M.A. Alqudah and A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8(1) (2023), 102-124.
[31] W. Phuengrattana and S. Suantai, On the rate off convergence of Mann, Ishikawa, Noor and SP iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math., 235 (2011), 3006-3014. · Zbl 1215.65095
[32] S. Reich and I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537-558. · Zbl 0728.47043
[33] K. Sokhuma and K. Sokhuma, Convergence theorems for two nonlinear mappings in CAT(0) spaces, Nonlinear Funct Anal. Appl., 27(3) (2021), 499-512. · Zbl 07589360
[34] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonex-pansive mappings, J. Math. Anal. Appl., 340(2) (2008), 1088-1095. · Zbl 1140.47041
[35] B.S. Thakurr, D. Thakur and M. Postolache, A new iterative scheme for numerical reckoning of fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., 275(15) (2016), 147-155. · Zbl 1410.65226
[36] I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Annals of the University of Craiova, Math. Comput. Sci. Series, 37(2) (2010), 106-114. · Zbl 1224.54107
[37] V. Vairaperumal, Common fixed point theorems under rational contractions in complex valued extended b-metric spaces, Nonlinear Funct Anal. Appl., 26(4) (2021), 685-700. · Zbl 1491.54169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.