×

On a four-step iterative algorithm and its application to delay integral equations in hyperbolic spaces. (English) Zbl 1534.65082

Summary: The purpose of this article is to study \(A^*\) iterative algorithm in hyperbolic space. We prove the weak \(w^2\)-stability, data dependence and convergence results of the proposed iterative algorithm for contractive-like mappings in hyperbolic spaces. Furthermore, we study several strong and \(\vartriangle\)-convergence analysis for fixed points of generalized Reich-Suzuki nonexpansive-type mappings. Some new numerical examples are provided to compare the efficiency and applicability of the proposed iterative algorithm over existing iterative algorithms. As an application, we use the proposed iterative method to approximate the solution of a delay nonlinear Volterra integral equation in hyperbolic spaces. We also furnished an example which validate the mild conditions in the application results. Our results are new and improve several results in the current literature.

MSC:

65J15 Numerical solutions to equations with nonlinear operators
54H25 Fixed-point and coincidence theorems (topological aspects)
54E40 Special maps on metric spaces
45G10 Other nonlinear integral equations
65R20 Numerical methods for integral equations
Full Text: DOI

References:

[1] Abbas, M.; Nazir, T., A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vesnik, 66, 2, 223-234 (2014) · Zbl 1465.47049
[2] Agarwal, RP; O’Regan, D.; Sahu, DR, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8, 1, 61-79 (2007) · Zbl 1134.47047
[3] Alam, A.; George, R.; Imdad, M.; Hasanuzzaman, M., Fixed point theorems for nonexpansive mappings under binary relations, Mathematics, 9, 17, 2059 (2021) · doi:10.3390/math9172059
[4] Ali, J.; Ali, F., A new iterative scheme to approximating fixed points and the solution of a delay differential equation, J. Nonlinear Convex Anal., 21, 2151-2163 (2020) · Zbl 1487.47123
[5] Aoyama, K.; Kohsaka, F., Fixed point theorem for \(\alpha \)-nonexpansive mappings in Banach spaces, Nonlinear Anal., 74, 13, 4387-4391 (2011) · Zbl 1238.47036 · doi:10.1016/j.na.2011.03.057
[6] Berinde, V., On the approximation of fixed points of weak contractive mapping, Carpath. J. Math., 19, 7-22 (2003) · Zbl 1114.47045
[7] Bera, A.; Chanda, A.; Dey, LK; Ali, J., Iterative approximation of fixed points of a general class of non-expansivemappings in hyperbolic metric spaces, J. Appl. Math. Comput. (2021) · Zbl 1491.47077 · doi:10.1007/s12190-021-01592-z
[8] Berinde, V., Iterative Approximation of Fixed Points (2007), Berlin: Springer, Berlin · Zbl 1165.47047
[9] Bridson, N.; Haefliger, A., Metric Spaces of Non-positive Curvature (1999), Berlin: Springer, Berlin · Zbl 0988.53001 · doi:10.1007/978-3-662-12494-9
[10] Browder, FE, Fixed-point theorems for noncompact mappings in Hilbert space, Proc. Natl. Acad. Sci., 53, 1272-1276 (1965) · Zbl 0125.35801 · doi:10.1073/pnas.53.6.1272
[11] Browder, FE, Nonexpansive nonlinear operators in Banach spaces, Proc. Natl. Acad. Sci., 54, 1041-1044 (1965) · Zbl 0128.35801 · doi:10.1073/pnas.54.4.1041
[12] Cădariu, L.; Găvruţa, L.; Găvruţa, P., Weighted space method for the stability of some nonlinear equations, Appl. Anal. Discrete Math., 6, 1, 126-139 (2012) · Zbl 1289.39054 · doi:10.2298/AADM120309007C
[13] Cardinali, T.; Rubbioni, P., A generalization of the Caristi fixed point theorem in metric spaces, Fixed Point Theory., 11, 1, 3-10 (2010) · Zbl 1190.54028
[14] Castro, L.P., Guerra, R.C.: Libertas Mathematica (New Series), 33(2), 21-35 (2013). doi:10.14510/lm-ns.v33i2 · Zbl 1330.45010
[15] García-Falset, J.; Llorens-Fuster, E.; Suzuki, T., Fixed point theory for a class of generalized nonexpansive mappings, J. Math. Anal. Appl., 375, 1, 185-195 (2011) · Zbl 1214.47047 · doi:10.1016/j.jmaa.2010.08.069
[16] Goebel, K.; Reich, S., Uniformly Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), New York: Marcel Dekker Inc, New York · Zbl 0537.46001
[17] Goebel, K., Kirk, W.A.: Iteration processes for nonexpansive mappings. In: Singh, S.P., Thomeier, S., Watson, B. (eds.) Topological Methods in Nonlinear Functional Analysis, , 21 of Contemporary Mathematics, pp. 115-123, American Mathematical Society, Providence, RI, USA (1983) · Zbl 0525.47040
[18] Goebel, K.; Kirk, WA, Topics in Metric Fixed Point Theory (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0708.47031 · doi:10.1017/CBO9780511526152
[19] Goebel, K., Kirk, W.A.: Iteration processes for nonexpansive mappings. In: Singh, S.P., Thomeier, S., Watson, B. (eds.) Topological methods in nonlinear functional analysis (Toronto, 1982), 21, 115-123. American Mathematical Society, New York, Contemporary Mathematics (1983) · Zbl 0525.47040
[20] Göhde, D., Zum Prinzip def Kontraktiven Abbilding, Math. Nachr., 30, 251-258 (1965) · Zbl 0127.08005 · doi:10.1002/mana.19650300312
[21] Harder, A.M.: Fixed point theory and stability results for fixed point iteration procedures, Ph.D. thesis, University of Missouri-Rolla, Missouri (1987)
[22] Harder, A. M., Hicks, T. L.: A stable iteration procedure for nonexpansive mappings, Math · Zbl 0655.47046
[23] Imdad, M.; Dashputre, S., Fixed point approximation of Picard normal S-iteration process for generalized nonexpansive mappings in hyperbolic spaces, Math. Sci., 10, 131-138 (2016) · Zbl 1368.47063 · doi:10.1007/s40096-016-0187-8
[24] Imoru, CO; Olantiwo, MO, On the stability of Picard and Mann iteration processes, Carpath. J. Math., 19, 2, 155-160 (2003) · Zbl 1086.47512
[25] Ishikawa, S., Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Am. Math. Soc., 59, 1, 65-71 (1976) · Zbl 0352.47024 · doi:10.1090/S0002-9939-1976-0412909-X
[26] Khan, AR; Fukhar-ud-din, H.; Khan, MA, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012, 54 (2012) · Zbl 1345.54055 · doi:10.1186/1687-1812-2012-54
[27] Kohlenbach, U., Some logical metatheorems with applications in functional analysis, Trans. Am. Math. Soc., 357, 1, 89-128 (2005) · Zbl 1079.03046 · doi:10.1090/S0002-9947-04-03515-9
[28] Leuştean, L., A quadratic rate of asymptotic regularity for CAT(0) space, J. Math. Anal. Appl., 325, 1, 386-399 (2007) · Zbl 1103.03057 · doi:10.1016/j.jmaa.2006.01.081
[29] Mann, WR, Mean value methods in iteration, Proc. Am. Math. Soc., 4, 506-510 (1953) · Zbl 0050.11603 · doi:10.1090/S0002-9939-1953-0054846-3
[30] Martinez-Moreno, J., Calderon, K., Kumam, P., Rojas, E.: Approximating fixed points of Suzuki \((\alpha , \beta )\)-nonexpansive mappings in ordered hyperbolic metric spaces. Adv. Metric Fixed Point Theory Appl., 365-383, Springer, Singapore (2021) · Zbl 1472.47093
[31] Noor, MA, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251, 1, 217-229 (2000) · Zbl 0964.49007 · doi:10.1006/jmaa.2000.7042
[32] Ofem, AE; Igbokwe, DI, A new faster four step iterative algorithm for Suzuki generalized nonexpansive mappings with an application, Adv. Theory Nonlinear Anal.Appl., 5, 3, 482-506 (2021) · doi:10.31197/atnaa.869046
[33] Ofem, A.E., Ali, Isik F., Ahmad, J.: A new iterative approximation scheme for Reich-Suzuki-type nonexpansive operators with an application. J. Inequal. Appl. Paper No. 28, 26 pp (2022) · Zbl 1506.47112
[34] Pandey, R.; Pant, R.; Rakocevic, V.; Shukla, R., Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications, Results Math, 74, 7 (2019) · Zbl 1466.47056 · doi:10.1007/s00025-018-0930-6
[35] Pant, R.; Pandey, R., Existence and convergence results for a class of non-expansive type mappings in hyperbolic spaces, Appl. Gen. Topol., 20, 281-295 (2019) · Zbl 1475.47031 · doi:10.4995/agt.2019.11057
[36] Pant, D.; Shukla, R., Approximating fixed points of generalized \(\alpha \)-nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim., 38, 2, 248-266 (2017) · Zbl 1367.47069 · doi:10.1080/01630563.2016.1276075
[37] Reich, S., Some remarks concerning contractions mappings, Canad. Math. Bull., 14, 121-124 (1971) · Zbl 0211.26002 · doi:10.4153/CMB-1971-024-9
[38] Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15, 537-558. 248-266 (1990) · Zbl 0728.47043
[39] Saluja, GS; Nashine, HK, Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Opusc. Math., 30, 3, 331-340 (2010) · Zbl 1222.54046 · doi:10.7494/OpMath.2010.30.3.331
[40] Senter, HF; Dotson, WG, Approximating fixed points of nonexpansive mappings, Proc. Am. Math. Soc., 44, 375-380 (1974) · Zbl 0299.47032 · doi:10.1090/S0002-9939-1974-0346608-8
[41] Soltuz, SM; Grosan, T., Data dependence for Ishikawa iteration when dealing with contractive like operators, Fixed Point Theory Appl. Article ID, 242916, 2008 (2008) · Zbl 1205.47059 · doi:10.1155/2008/242916
[42] Suzuki, T., Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340, 1088-590 (2008) · Zbl 1140.47041 · doi:10.1016/j.jmaa.2007.09.023
[43] Thakurr, BS; Thakur, D.; Postolache, M., A new iterative scheme for numerical reckoning of fixed points of Suzuki’s generalized nonexpansive mappings, Appl. Math. Comput., 275, 1088-1095 (2016)
[44] Timis, I., On the weak stability of Picard iteration for some contractive type mappings, Ann. Univ. Craiova, Math. Comput. Sci. Ser., 37, 2, 106-114 (2010) · Zbl 1224.54107
[45] Ullah, K.; Arshad, M., Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process, Filomat, 32, 1, 187-196 (2018) · Zbl 1484.47187 · doi:10.2298/FIL1801187U
[46] Ullah, K.; Arshad, M., New three-step iteration process and fixed point approximation in Banach spaces, J. Linear Topol. Algebra, 7, 2, 87-100 (2018) · Zbl 1413.47146
[47] Wazwaz, A.M.: Application of integral equations, In: Linear and Nonlinear Equations, Springer, Berlin (2011). doi:10.1007/978-3-642-21449-3_18 · Zbl 1227.45002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.