×

Strong convergence of modified SP-iteration for mixed type asymptotically nonexpansive mappings in hyperbolic spaces. (English) Zbl 07829180

Summary: In this paper, a modified SP-iteration for asymptotically nonexpansive mappings is introduced and studied. We then establish a strong convergence theorem for a modified SP-iteration scheme for three asymptotically nonexpansive self-mappings and three asymptotically nonexpansive nonself-mappings under mild conditions in a uniformly convex hyperbolic spaces. The results presented here extend and improve some related results in the literature.

MSC:

47H10 Fixed-point theorems
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
46B20 Geometry and structure of normed linear spaces

References:

[1] S. Aggarwal, S.H. Khan, I. Uddin, Semi-implicit midpoint rule for convergence in hyperbolic metric space, Mathematics in Engineering. Science and Aerospace 12 (2) (2021) 413-420.
[2] S. Aggarwal, I. Uddin, Convergence and stability of Fibonacci-Mann iteration for a monotone non-Lipschitzian mapping, Demonstr. Math. 52 (1) (2019) 388-396. · Zbl 1477.47083
[3] S. Aggarwal, I. Uddin, J.J. Nieto, A fixed-point theorem for monotone nearly asymp-totically nonexpansive mappings, J. Fixed Point Theory Appl. 21 (4) (2019) 1-11. · Zbl 07115533
[4] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, A self adaptive inertial algorithm for solving split variational inclusion and fixed point problems with applications, J. Ind. Manag. Optim. 18 (1) (2022) 239-265. · Zbl 1497.47090
[5] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Two modifications of the inertial Tseng extragradient method with self-adaptive step size for solving monotone variational inequality problems, Demonstr. Math. 53 (1) (2020) 208-224. · Zbl 1451.65079
[6] T.O. Alakoya, L.O. Jolaoso, O.T. Mewomo, Modified inertial subgradient extragra-dient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, optim. 70 (3) (2021) 545-574. · Zbl 1468.65052
[7] T.O. Alakoya, A. Taiwo, O.T. Mewomo, Y.J. Cho, An iterative algorithm for solving variational inequality, generalized mixed equilibrium, convex minimization and zeros problems for a class of nonexpansive-type mappings, Ann. Univ. Ferrara Sez. VII Sci. Mat. 67 (1) (2021) 1-31. · Zbl 1472.65077
[8] K.O. Aremu, C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, Multi-step Iterative algo-rithm for minimization and fixed point problems in p-uniformly convex metric spaces, J. Ind. Manag. Optim. 17 (4) (2020) 2161-2180. · Zbl 1476.65084
[9] R.E. Bruck, T. Kuczumow, S. Reich, Convergence of iterates of asymptotically non-expansive mappings in Banach spaces with the uniform Opial property, Colloquium Math. 65 (2) (1993) 169-179. · Zbl 0849.47030
[10] C.E. Chidume, E.U. Ofoedu, H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2) (2003) 364-374. · Zbl 1057.47071
[11] H. Dehghan, C. Izuchukwu, O.T. Mewomo, D.A. Taba, G.C. Ugwunnadi, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math. 43 (7) (2020) 975-998. · Zbl 07311174
[12] A. Gibali, L.O. Jolaoso, O.T. Mewomo, A. Taiwo, Fast and simple Bregman pro-jection methods for solving variational inequalities and related problems in Banach spaces, Results Math. 75 (4) (2020) 1-36. · Zbl 07271472
[13] E.C. Godwin, C. Izuchukwu, O.T. Mewomo, An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces, Boll. Unione Mat. Ital. 14 (2) (2020) 379-401. · Zbl 1494.47106
[14] K. Goebel, W.A. Kirk, A fixed point theorem for asymptotically nonexpansive map-pings, Proc. Am. Math. Soc. 35 (1) (1972) 171-174. · Zbl 0256.47045
[15] K. Goebel, W.A. Kirk, Iteration processes for nonexpansive mappings, Contemp. Math. 21 (1983) 115-123. · Zbl 0525.47040
[16] K. Goebel, S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Marcel Dekket, Inc., New York, 1984. · Zbl 0537.46001
[17] W. Guo, Y.J. Cho, W. Guo, Convergence theorems for mixed type asymptotically nonexpansive mappings, Fixed Point Theory Appl. 2012 (1) (2012) 1-15. · Zbl 1428.47024
[18] C. Izuchukwu, A.A. Mebawondu, O.T. Mewomo, A new method for solving split variational inequality problems without co-coerciveness, J. Fixed Point Theory Appl. 22 (4) (2020) 1-23. · Zbl 1484.47156
[19] C. Izuchukwu, G.N. Ogwo, O.T. Mewomo, An inertial method for solving generalized split feasibility problems over the solution set of monotone variational inclusions, Optim. 71 (3) (2020) 583-611. · Zbl 07507027
[20] S.J. Jayashree, A.A. Eldred, Strong convergence theorems for mixed type asymptot-ically nonexpansive mappings in hyperbolic spaces, Malaya Journal of Matematik (MJM) 2020 (1) (2020) 380-385.
[21] A.R. Khan, H. Fukhar-ud-din, M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl. 2012 (1) (2012) 1-12. · Zbl 1345.54055
[22] U. Kohlenbach, Some logical metathorems with applications in functional analysis, Trans. Amer. Math. Soc. 357 (1) (2005) 89-128. · Zbl 1079.03046
[23] E. Kopeck, S. Reich, Nonexpansive retracts in Banach spaces, Banach Center Publ. 77 (2007) 161-174. · Zbl 1125.46019
[24] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0)-spaces, J. Math. Anal. Appl. 325 (1) (2007) 386-399. · Zbl 1103.03057
[25] Z. Liu, C. Feng, J.S. Ume, S.M. Kang, Weak and strong convergence for common fixed points of a pair of nonexpansive and asymptotically nonexpansive mappings, Taiwaness J. Math. 11 (2007) 27-42. · Zbl 1151.47060
[26] M.O. Osilike, A. Udomene, Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model. 32 (10) (2000) 1181-1191. · Zbl 0971.47038
[27] O.K. Oyewole, H.A. Abass, O.T. Mewomo, A strong convergence algorithm for a fixed point constrainted split null point problem, Rend. Circ. Mat. Palermo II. 70 (1) (2021) 389-408. · Zbl 1522.47097
[28] O.K. Oyewole, C. Izuchukwu, C.C. Okeke, O.T. Mewomo, Inertial approximation method for split variational inclusion problem in Banach spaces, Int. J. Nonlinear Anal. Appl. 11 (2) (2020) 285-304. · Zbl 1519.47090
[29] W. Phuengrattana, S. Suantai, On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval, J. Comput. Appl. Math. 235 (9) (2011) 3006-3014. · Zbl 1215.65095
[30] S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (2) (1979) 274-276. · Zbl 0423.47026
[31] S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal. 15 (1990) 537-558. · Zbl 0728.47043
[32] B.E. Rhoades, Fixed point iterations for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1) (1994) 118-120. · Zbl 0807.47045
[33] A. S ¸ahin, Some new results of M-iteration process in hyperbolic spaces, Carpathian J. Math. 35 (2) (2019) 221-232. · Zbl 1463.47157
[34] A. S ¸ahin, Some results of the Picard-Krasnoselskii hybrid iterative process, Filomat 33 (2) (2019) 359-365. · Zbl 1497.47113
[35] A. S ¸ahin, M. Basarir, Some convergence results for nonexpansive mappings in uni-formly convex hyperbolic spaces, Creat. Math. Inform. 26 (2017) 331-338. · Zbl 1413.47132
[36] J. Schu, Iterative construction of a fixed points of asymptotically nonexpansive map-pings, J. Math. Anal. Appl. 158 (2) (1991) 407-413. · Zbl 0734.47036
[37] J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc. 43 (1) (1991) 153-159. · Zbl 0709.47051
[38] T. Shimizu, W. Takahashi, Fixed points of multivalued mappings in certain convex metric spaces, Topol. Methods Nonlinear Anal. 8 (1) (1996) 197-203. · Zbl 0902.47049
[39] C. Suanoom, C. Klin-eam, Remark on fundamentally non-expansive mappings in hyperbolic spaces, J. Nonlinear Sci. Appl. 9 (2016) 1952-1956. · Zbl 1337.47070
[40] R. Suparatulatorn, P. Cholamjiak, The modified S-iteration process for nonexpansive mappings in CAT(κ) spaces, Fixed Point Theory Appl. 2016 (1) (2016) 1-12. · Zbl 1510.47111
[41] R. Suparatulatorn, P. Cholamjiak, S. Suantai, On solving the minimization problem and the fixed point problem for nonexpansive mappings in CAT(0) spaces, Optimiza-tion Methods and Software 32 (1) (2017) 182-192. · Zbl 06734174
[42] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Halpern-type iterative process for solving split common fixed point and monotone variational inclusion problem between Ba-nach spaces, Numer. Algorithms 86 (4) (2021) 1359-1389. · Zbl 07331334
[43] A. Taiwo, T.O. Alakoya, O.T. Mewomo, Strong convergence theorem for fixed points of relatively nonexpansive multi-valued mappings and equilibrium problems in Ba-nach spaces, Asian-Eur. J. Math. 14 (08) (2021) 2150137. · Zbl 1479.47074
[44] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, Inertial-type algorithm for solving split com-mon fixed-point problem in Banach spaces, J. Sci. Comput. 86 (1) (2021) 1-30. · Zbl 07301290
[45] A. Taiwo, L.O. Jolaoso, O.T. Mewomo, A. Gibali, On generalized mixed equilibrium problem with α-β -µ bifunction and µ-τ monotone mapping, J. Nonlinear Convex Anal. 21 (6) (2020) 1381-1401. · Zbl 1466.47048
[46] A. Taiwo, A.E. Owolabi, L.O. Jolaoso, O.T. Mewomo, A. Gibali, A new approxi-mation scheme for solving various split inverse problems, Afr. Mat. 32 (3) (2021) 369-401. · Zbl 1484.47170
[47] W.A. Takahashi, A convexity in metric space and nonexpansive mappings, I. Kodai Math. Sem. Rep. 22 (2) (1970) 142-149. · Zbl 0268.54048
[48] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301-308. · Zbl 0895.47048
[49] S. Thianwan, Common fixed points of new iterations for two asymptotically nonex-pansive nonself-mappings in a Banach space, J. Comput. Appl. Math. 224 (2) (2009) 688-695. · Zbl 1161.65043
[50] L. Wang, Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. Math. Anal. Appl. 323 (1) (2006) 550-557. · Zbl 1126.47055
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.