×

A strong convergence algorithm for a fixed point constrained split null point problem. (English) Zbl 1522.47097

Summary: In this paper, we introduce a new algorithm with self adaptive step-size for finding a common solution of a split feasibility problem and a fixed point problem in real Hilbert spaces. Motivated by the self adaptive step-size method, we incorporate the self adaptive step-size to overcome the difficulty of having to compute the operator norm in the proposed method. Under standard and mild assumption on the control sequences, we establish the strong convergence of the algorithm, obtain a common element in the solution set of a split feasibility problem for sum of two monotone operators and fixed point problem of a demimetric mapping. Numerical examples are presented to illustrate the performance and the behavior of our method. Our result extends, improves and unifies other results in the literature.

MSC:

47J25 Iterative procedures involving nonlinear operators
47J22 Variational and other types of inclusions
47H05 Monotone operators and generalizations
49J35 Existence of solutions for minimax problems
90C47 Minimax problems in mathematical programming
Full Text: DOI

References:

[1] Alakoya, TO; Jolaoso, LO; Mewomo, OT, Modified inertia subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems, Optimization (2020) · Zbl 1451.65079 · doi:10.1080/02331934.2020.1723586
[2] Aremu, KO; Jolaoso, LO; Izuchukwu, C.; Mewomo, OT, Approximation of common solution of finite family of monotone inclusion and fixed point problems for demicontractive multivalued mappings in CAT(0) spaces, Ric. Mat. (2019) · Zbl 1439.47045 · doi:10.1007/s11587-019-00446-y
[3] Baillon, JB; Bruck, RE; Reich, S., On the aymptotic behaviour of nonexpansive mappings and semi groups in Banach spaces, Houst. J. Math., 4, 2, 1-9 (1978) · Zbl 0431.47034
[4] Boikanyo, OA, The viscosity approximation forward-backward splitting method for zeros of the sum of monotone operators, Abstr. Appl. Anal., 2016, 10 (2016) · Zbl 1470.65109 · doi:10.1155/2016/2371857
[5] Browder, FE; Petryshyn, WV, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20, 197-228 (1967) · Zbl 0153.45701 · doi:10.1016/0022-247X(67)90085-6
[6] Bruck, RE; Reich, S., Nonexpansive projections and resolvents of accretive operators in Banach space, Houst. J. Math., 3, 1, 459-470 (1977) · Zbl 0383.47035
[7] Bryne, C., Iterative oblique projection onto convex sets and split feasibility problem, Inverse Probl., 18, 1, 441-453 (2002) · Zbl 0996.65048 · doi:10.1088/0266-5611/18/2/310
[8] Censor, Y.; Elfving, T., A multiprojection algorithm using Bregman projections in product space, Numer. Algorithms, 8, 1, 221-239 (1994) · Zbl 0828.65065 · doi:10.1007/BF02142692
[9] Censor, Y.; Bortfield, T.; Martin, B.; Trofimov, A., A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51, 1, 2353-2365 (2006) · doi:10.1088/0031-9155/51/10/001
[10] Censor, Y.; Gibali, A.; Reich, S., Algorithms for the split variational inequality problem, Numer. Algorithms, 59, 301-323 (2012) · Zbl 1239.65041 · doi:10.1007/s11075-011-9490-5
[11] Dehghan, H.; Izuchukwu, C.; Mewomo, OT; Taba, DA; Ugwunnadi, GC, Iterative algorithm for a family of monotone inclusion problems in CAT(0) spaces, Quaest. Math. (2019) · Zbl 07311174 · doi:10.2928/16073606.2019.1593255
[12] Eckstein, J.; Berstsckas, DP, On the Douglas-Rachford splitiing method and the proximal point algorithm for maximal monotone operators, Math. Program., 55, 1, 293-318 (1992) · Zbl 0765.90073 · doi:10.1007/BF01581204
[13] Gibali, A., A new split inverse problem and application to least intensity feasible solutions, Pure Appl. Funct. Anal., 2, 2, 243-258 (2017) · Zbl 1375.49048
[14] Goebel, K.; Reich, S., Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings (1984), New York, Basel: Marcel Dekker, New York, Basel · Zbl 0537.46001
[15] Hecai, Y., On solutions of inclusion problems and fixed point problems, Fixed Point Theory Appl., 2013, 10 (2013) · Zbl 1306.54058 · doi:10.1186/1687-1812-2013-10
[16] Izuchukwu, C.; Aremu, KO; Mebawondu, AA; Mewomo, OT, A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen. Topol., 20, 1, 193-210 (2019) · Zbl 1475.47058 · doi:10.4995/agt.2019.10635
[17] Izuchukwu, C.; Mebawondu, AA; Aremu, KO; Abass, HA; Mewomo, OT, Viscosity iterative techniques for approximating a common zero of monotone operators in an Hadamard space, Rend. Circ. Mat. Palermo (2019) · Zbl 1461.47033 · doi:10.1007/s12215-019-00415-2
[18] Izuchukwu, C., Ogwo, G.N., Mebawondu, A.A., Mewomo, O.T.: On finite family of monotone variational inclusion problems in reflexive Banach space. Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys. (2019) (accepted, to appear)
[19] Izuchukwu, C.; Ugwunnadi, GC; Mewomo, OT; Khan, AR; Abbas, M., Proximal-type algorithms for split minimization problem in p-uniformly convex metric space, Numer. Algorithms, 82, 3, 909-935 (2019) · Zbl 07128071 · doi:10.1007/s11075-018-0633-9
[20] Jolaoso, LO; Alakoya, TO; Taiwo, A.; Mewomo, OT, A parallel combination extragradient method with Armijo line searching for finding common solution of finite families of equilibrium and fixed point problems, Rend. Circ. Mat. Palermo (2019) · Zbl 1461.65196 · doi:10.1007/s12215-019-00431-2
[21] Jolaoso, LO; Alakoya, TO; Taiwo, A.; Mewomo, OT, Inertial extragradient method via viscosity approximation approach for solving equilibrium problem in Hilbert space, Optimization (2020) · Zbl 1459.65097 · doi:10.1080/02331934.2020.1716752
[22] Jolaoso, LO; Taiwo, A.; Alakoya, TO; Mewomo, OT, A strong convergence theorem for solving variational inequalities using an inertial viscosity subgradient extragradient algorithm with self adaptive stepsize, Demonstr. Math., 52, 1, 183-203 (2019) · Zbl 1418.49008 · doi:10.1515/dema-2019-0013
[23] Jolaoso, LO; Taiwo, A.; Alakoya, TO; Mewomo, OT, A unified algorithm for solving variational inequality and fixed point problems with application to the split equality problem, Comput. Appl. Math. (2019) · Zbl 1438.65138 · doi:10.1007/s40314-019-1014-2
[24] Komiya, H.; Takahashi, W., Strong convergence theorem for an infinite family of demimetric mappings in a Hilbert space, J. Convex Anal., 24, 4, 1357-1373 (2017) · Zbl 1493.47114
[25] Lopez, G.; Martin-Marquez, V.; Wang, F.; Xu, HK, Solving the split feasibility problem without prior knowledge of matrix norms, Inverse Probl., 28, 8, 18 (2012) · Zbl 1262.90193 · doi:10.1088/0266-5611/28/8/085004
[26] Mainge, PE, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Var. Anal., 16, 899-912 (2008) · Zbl 1156.90426 · doi:10.1007/s11228-008-0102-z
[27] Martinet, B., Regularisation d’inequations variationelles par approximations successives, Rev. Franaise Inform. Rech. Oper., 4, 1, 154-158 (1970) · Zbl 0215.21103
[28] Moudafi, A., Split monotone variational inclusions, J. Optim. Theory Appl., 150, 1, 275-283 (2011) · Zbl 1231.90358 · doi:10.1007/s10957-011-9814-6
[29] Nevanlinna, O.; Reich, S., Strong convergence of contraction semigroups and of iterative methods for accretive operators in Banach spaces, Israel J. Math., 32, 44-58 (1979) · Zbl 0427.47049 · doi:10.1007/BF02761184
[30] Ogwo, G.N., Izuchukwu, C., Aremu, K.O., Mewomo, O.T.: A viscosity iterative algorithm for a family of monotone inclusion problems in an Hadamard space. Bull. Belg. Math. Soc. Simon Stevin. (2019) (accepted, to appear) · Zbl 1442.47050
[31] Oyewole, OK; Jolaoso, LO; Izuchukwu, C.; Mewomo, OT, On approximation of common solution of finite family of mixed equilibrium problems involving \(\mu -\alpha\) relaxed monotone mapping in Banach space, Politeh. Univ. Buchar. Sci. Bull. Ser. A Appl. Math. Phys., 81, 1, 19-34 (2019) · Zbl 1513.90207
[32] Rockafellar, RT, On the maximal monotonicity of subdifferential mappings, Pac. J. Math., 33, 209-216 (1970) · Zbl 0199.47101 · doi:10.2140/pjm.1970.33.209
[33] Taiwo, A.; Jolaoso, LO; Mewomo, OT, A modified Halpern algorithm for approximating a common solution of split equality convex minimization problem and fixed point problem in uniformly convex Banach spaces, Comput. Appl. Math., 38, 2, 77 (2019) · Zbl 1438.47122 · doi:10.1007/s40314-019-0841-5
[34] Taiwo, A.; Jolaoso, LO; Mewomo, OT, Parallel hybrid algorithm for solving pseudomonotone equilibrium and split common fixed point problems, Bull. Malays. Math. Sci. Soc. (2019) · Zbl 1480.47100 · doi:10.1007/s40840-019-00781-1
[35] Taiwo, A.; Jolaoso, LO; Mewomo, OT, General alternative regularization method for solving split equality common fixed point problem for quasi-pseudocontractive mappings in Hilbert spaces, Ric. Mat. (2019) · Zbl 1439.47056 · doi:10.1007/s11587-019-00460-0
[36] Takahashi, W., Introduction to Nonlinear and Convex Analysis (2009), Yokohama: Yokohama Publishers, Yokohama · Zbl 1183.46001
[37] Takahashi, W.; Xu, HK; Yao, JC, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set-Valued Var. Anal., 23, 2, 205-221 (2015) · Zbl 1326.47099 · doi:10.1007/s11228-014-0285-4
[38] Takahashi, W., The split common fixed point problem and the shrinking projection method in Banach spaces, J. Convex Anal., 24, 3, 1015-1028 (2017) · Zbl 1503.47097
[39] Takahashi, W., The shrinking method for a finite family of demimetric mapping with variational inequality problems in a Hilbert space, Fixed Theory Appl., 19, 1, 407-420 (2018) · Zbl 1462.47043 · doi:10.24193/fpt-ro.2018.1.32
[40] Takahashi, W.; Toyoda, M., Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim Theory Appl., 118, 2, 417-428 (2003) · Zbl 1055.47052 · doi:10.1023/A:1025407607560
[41] Wang, F.; Xu, HK, Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem, J. Inequal. Appl., 2010, 102085 (2010) · Zbl 1189.65107
[42] Xu, HK, Averaged mappings and the gradient projection algorithm, J. Optim. Theory Appl., 150, 2, 360-378 (2011) · Zbl 1233.90280 · doi:10.1007/s10957-011-9837-z
[43] Xu, HK, Iterative algorithms for nonlinear operators, J. Lond. Math. Soc., 66, 1, 240-256 (2002) · Zbl 1013.47032 · doi:10.1112/S0024610702003332
[44] Yao, Y.; Noor, MA, On convegence criteria of generalized proximal point algorithm, J. Comput. Appl. Math., 217, 1, 46-55 (2008) · Zbl 1147.65049 · doi:10.1016/j.cam.2007.06.013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.