×

Effective elastic properties of periodic composite medium. (English) Zbl 1077.74592

Summary: A new method is presented for calculating the bulk effective elastic stiffness tensor of a two-component composite with a periodic microstructure. The basic features of this method are similar to the one introduced by Bergman and Dunn (1992) for the dielectric problem. It is based on a Fourier representation of an integro-differential equation for the displacement field, which is used to produce a continued-fraction expansion for the elastic moduli. The method enabled us to include a much larger number of Fourier components than some previously proposed Fourier methods. Consequently our method provides the possibility of performing reliable calculations of the effective elastic tensor of periodic composites that are neither dilute nor low contrast, and are not restricted to arrays of nonoverlapping inclusions. We present results for a cubic array of nonoverlapping spheres, intended to serve as a test of quality, as well as results for a cubic array of overlapping spheres and a two dimensional hexagonal array of circles (a model for a fiber reinforced material) for comparison with previous work.

MSC:

74Q15 Effective constitutive equations in solid mechanics
74E30 Composite and mixture properties
Full Text: DOI

References:

[1] Baker Jr., G.A., 1975. Essentials of Padé Approximations, Academic Press, New York (Chapters 15-16).; Baker Jr., G.A., 1975. Essentials of Padé Approximations, Academic Press, New York (Chapters 15-16). · Zbl 0315.41014
[2] Bergman, D. J., The dielectric constant of a composite material—a problem in classical physics, Phys. Rep., 43, 377-407 (1978)
[3] Bergman, D. J., Bulk physical properties of composite media, (Dautray, R., Les Méthodes de l’Homogénéisation: théorie et application en physique (1985), Eyrolles: Eyrolles Paris), 97-128
[4] Bergman, D. J., Hierarchies of Stieltjes functions and their application to the calculation of bounds for the dielectric constant of a two-component composite medium, J. Appl. Math., 53, 915-930 (1993) · Zbl 0782.30001
[5] Bergman, D. J.; Dunn, K.-J., Bulk effective dielectric constant of a composite with a periodic microgeometry, Phys. Rev. B, 45, 13262-13271 (1992)
[6] Cohen, I., Bergman, D.J. Clausius-Mossotti-type approximation for elastic moduli of a cubic array of spheres (unpublished).; Cohen, I., Bergman, D.J. Clausius-Mossotti-type approximation for elastic moduli of a cubic array of spheres (unpublished).
[7] Eischen, J. W.; Torquato, S., Determining elastic behavior of composites by the boundary element method, J. Appl. Phys., 74, 159-170 (1993)
[8] Eyre, D. J.; Milton, G. W., A fast numerical scheme for computing the response of composites using grid refinement, Eur. Phys. J. AP, 6, 41-47 (1999)
[9] Francfort, G. A.; Murat, F., Homogenization and optimal bounds in linear elasticity, Arch. Rat. Mech. Anal., 94, 307-334 (1986) · Zbl 0604.73013
[10] Greengard, L.; Helsing, J., On the numerical evaluation of elastostatic fields in locally isotropic two-dimensional composites, J. Mech. Phys. Solids, 46, 1441-1462 (1998) · Zbl 0955.74054
[11] Hashin, Z., On elastic behaviour of fiber reinforced materials of arbitrary transverse phase geometry, J. Mech. Phys. Solids, 13, 119-134 (1965)
[12] Hashin, Z., Analysis of composite materials—a survey, J. Appl. Mech., 50, 481-505 (1983) · Zbl 0542.73092
[13] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behavior of multiphase materials, J. Mech. Phys. Solids, 11, 127-140 (1963) · Zbl 0108.36902
[14] Helsing, J., An integral equation method for elastostatics of periodic composites, J. Mech. Phys. Solids, 43, 815-828 (1995) · Zbl 0870.73042
[15] Helsing, J.; Jonsson, A., Complex variable boundary integral equations for perforated infinite planes, Eng. Anal. Bound. Elem., 25, 191-202 (2001) · Zbl 0997.74073
[16] Helsing, J.; Milton, J. W.; Movchan, A. B., Duality relations, correspondence and numerical results for planar elastic composites, J. Mech. Phys. Solids, 45, 565-590 (1997) · Zbl 0969.74567
[17] Hill, R., The elastic behavior of a crystalline aggregate, Proc. Phys. Soc. A, 65, 349-354 (1952)
[18] Hill, R., Elastic properties of reinforced solidssome theoretical principles, J. Mech. Phys. Solids, 11, 357-372 (1963) · Zbl 0114.15804
[19] Hill, R., Theory of mechanical properties of fiber strengthened materialsI. elastic behaviour, J. Mech. Phys. Solids, 12, 199-212 (1964)
[20] Kantor, Y.; Bergman, D. J., Elastostatic resonances—a new approach to the calculation of the effective elastic constants of composites, J. Mech. Phys. Solids, 30, 355-376 (1982) · Zbl 0488.73067
[21] Kantor, Y.; Bergman, D. J., Improved rigorous bounds on the effective elastic moduli of a composite material, J. Mech. Phys. Solids, 32, 41-62 (1984) · Zbl 0542.73003
[22] Ma, H.; Zhang, B.; Wing, Y. T.; Sheng, P., Dielectric-constant evaluation from microstructures, Phys. Rev. B, 61, 962-966 (2000)
[23] McPhedran, R. C.; Milton, G. W., Bounds and exact theories for the transport properties of inhomogeneous media, Appl. Phys. A, 26, 207-220 (1981)
[24] Michel, J. C.; Moulinec, H.; Suquet, P., A computational method based on augmented Lagrangians and fast Fourier transforms for composites with high contrast, Comput. Model. Eng. Sci., 1, 79-88 (2000)
[25] Michel, J. C.; Moulinec, H.; Suquet, P., A computational scheme for linear and non-linear composites with arbitrary phase contrast, Int. J. Numer. Mech. Eng., 52, 139-160 (2001)
[26] Milton, G. W., Bounds on the transport and optical properties of a two-component composite material, J. Appl. Phys., 52, 5294-5304 (1981)
[27] Milton, G. W., Variational bounds on the effective moduli of anisotropic composites, J. Mech. Phys. Solids, 36, 597-629 (1988) · Zbl 0672.73012
[28] Milton, G.W., 2002. The Theory of Composites. Cambridge University Press (Chapters 27-28).; Milton, G.W., 2002. The Theory of Composites. Cambridge University Press (Chapters 27-28). · Zbl 0993.74002
[29] Moulinec, H.; Suquet, P., A fast numerical method for computing the linear and nonlinear properties of composites, C. R. Acad. Sci. Paris II, 318, 1417-1423 (1994) · Zbl 0799.73077
[30] Moulinec, H.; Suquet, P., A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Meth. Appl. Mech. Eng., 157, 69-94 (1998) · Zbl 0954.74079
[31] Nemat-Nasser, S.; Iwakuma, T.; Hejazi, M., On composites with periodic structure, Mech. Mater., 1, 239-267 (1982)
[32] Nemat-Nasser, S., Hory, M., 1993. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (Chapter 4).; Nemat-Nasser, S., Hory, M., 1993. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam (Chapter 4). · Zbl 0924.73006
[33] Paul, B., Prediction of elastic constants of multiphase materials, Trans. AIME, 218, 36-41 (1960)
[34] Sheng, P.; Tao, R., First-principle approach to the calculation of effective elastic moduli for arbitrary periodic composites, J. Acoust. Soc. Am., 77, 1651-1658 (1985) · Zbl 0568.73013
[35] Sheng, P.; Tao, R., First-principle approach for effective elastic-moduli calculationapplication to continuous fractal structure, Phys. Rev. B, 31, 6131-6133 (1985)
[36] Strelniker, Y. M.; Bergman, D. J., Theory of magnetotransport in a composite medium with periodic microstructure for arbitrary magnetic field, Phys. Rev. B, 50, 14001-14015 (1994)
[37] Torquato, S., Random heterogeneous mediamicrostructure and improved bounds on effective properties, Appl. Mech. Rev., 44, 37-76 (1991)
[38] Watt, J. P.; Davies, G. F.; O’Connell, R. J., The elastic properties of composite materials, Rev. Geophys. Space. Phys., 14, 541-563 (1976)
[39] Willis, J. R., Bounds and self-consistent estimates for the overall moduli of anisotropic composites, J. Mech. Phys. Solids, 25, 185-202 (1977) · Zbl 0363.73014
[40] Willis, J. R., Elasticity Theory of Composites, (Hopkins, H. G.; Sewell, M. J., Mechanics of Solids—The Rodney Hill 60th Anniversary Volume (1982), Pergamon Press: Pergamon Press Oxford), 653-686 · Zbl 0508.73052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.