×

Time-dependent vacuum energy induced by \(\mathcal D\)-particle recoil. (English) Zbl 0967.83036

Summary: We consider cosmology in the framework of a ‘material reference system’ of \({\mathcal D}\) particles, including the effects of quantum recoil induced by closed-string probe particles. We find a time-dependent contribution to the cosmological vacuum energy, which relaxes to zero as \(\sim 1/t^2\) for large times \(t\). If this energy density is dominant, the Universe expands with a scale factor \(R(t)\sim t^2\). We show that this possibility is compatible with recent observational constraints from high-redshift supernovae, and may also respect other phenomenological bounds on time variation in the vacuum imposed by early cosmology.

MSC:

83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] Einstein, A. (1961). Relativity: The Special and General Theory: A Popular Exposition, transl. R. W. Lawson (Crown, New York).
[2] Carroll, S., Turner, M., and Press, H. (1992). Ann. · doi:10.1146/annurev.aa.30.090192.002435
[3] For theoretical reviews, see Weinberg, S. · Zbl 1129.83361 · doi:10.1103/RevModPhys.61.1
[4] For a representative sample of references on scenarios with a vacuum energy that relaxes to zero, see Özer, M., and Taha, M. · doi:10.1016/0370-2693(86)91421-8
[5] Witten, E. (1 · Zbl 1022.81798 · doi:10.1142/S0217732395002301
[6] Kachru, S., Kumar, J., and Silverstein, E. (1998). Preprint hep-th/9807076; Kachru, S., and Silverstein, E. (1998). Preprint hep-th/9810129.
[7] For a review, see Lineweaver, C. (1998). Preprint astro-ph/9810334.
[8] For a review, see Bahcall, N. A., and Fan, X.-H. (1998). Preprint astro-ph/9804082.
[9] For a review, see Gawiser, E., and · doi:10.1126/science.280.5368.1405
[10] Super-Kamiokande Collaboration, Y. Fukuda et al. · doi:10.1103/PhysRevLett.81.1562
[11] Perlmutter, S., et al. (1997). Preprint astro-ph/9712212; Riess, A. G., et al. (1998). Preprint astro-ph/9805201; Garnavich, P., et al. (1998). Preprint astro-ph/9806396.
[12] Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1 · doi:10.1142/S0217732397001795
[13] Ellis, J., Kanti, P., Mavromatos, N. E., Nanopoulos, D. V., and Winstanley,
[14] Polchinski, J. · Zbl 1020.81797 · doi:10.1103/PhysRevLett.75.4724
[15] Hilbert
[16] DeWitt, B. (1962). In Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New Y
[17] Rovelli, C. (199 · doi:10.1088/0264-9381/8/2/011
[18] Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (199 · Zbl 0936.81037 · doi:10.1142/S0217751X98002377
[19] Kogan, I., Mavromatos, N. E., and Wheater, J. · doi:10.1016/0370-2693(96)01067-2
[20] Gurarie, · Zbl 0990.81686 · doi:10.1016/0550-3213(93)90528-W
[21] Lizzi, F., and Mavromatos, N. · doi:10.1103/PhysRevD.55.7859
[22] David, F. (1 · doi:10.1142/S0217732388001975
[23] Ellis, J., Mavromatos, N. E., and Nanopoulos, D. · doi:10.1016/0370-2693(92)91478-R
[24] Ellis, J., Mavromatos, N. E., and Nanopoulos, D. · doi:10.1016/0370-2693(92)91357-F
[25] Fischler, W., and Susskind, · doi:10.1016/0370-2693(86)91425-5
[26] Antoniadis, I., Bachas, C., Ellis, J., and Nanopoulos, D. · doi:10.1016/0370-2693(88)91882-5
[27] Zamolodchikov, A.
[28] Wald, R. M. (1984). General Relativity (University of Chicago Press, Chicago). · Zbl 0549.53001
[29] Lahanas, A. B., and Nanopoulos, · doi:10.1016/0370-1573(87)90034-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.