Skip to main content
Log in

Time-Dependent Vacuum Energy Induced by \({\mathcal{D}}$$>\)–Particle Recoil

  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We consider cosmology in the framework of a ‘material reference system’ of \(\mathcal{D}\) particles, including the effects of quantum recoil induced by closed-string probe particles. We find a time-dependent contribution to the cosmological vacuum energy, which relaxes to zero as ∼1/t 2 for large times t. If this energy density is dominant, the Universe expands with a scale factor R(t)t 2. We show that this possibility is compatible with recent observational constraints from high–redshift supernovae, and may also respect other phenomenological bounds on time variation in the vacuum energy imposed by early cosmology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Einstein, A. (1961). Relativity: The Special and General Theory: A Popular Exposition, transl. R. W. Lawson (Crown, New York).

    Google Scholar 

  2. Carroll, S., Turner, M., and Press, H. (1992). Ann. Rev. Astron. Astrophys. 30, 499, and references therein.

    Google Scholar 

  3. For theoretical reviews, see Weinberg, S. (1989). Rev. Mod. Phys. 61, 1 and (1996). Preprint astro-ph/9610044. For a recent review on experimental and theoretical bounds on the cosmological constant, see Martel, H., Shapiro, P. R., and Weinberg, S. (1997). Preprint astro-ph/9701099.

    Google Scholar 

  4. For a representative sample of references on scenarios with a vacuum energy that relaxes to zero, see Özer, M., and Taha, M. O. (1986). Phys. Lett. B 171, 363; (1987). Nucl. Phys. B 287, 776; (1998). Mod. Phys. Lett. A 13, 571; Reuter, M., and Wetterich, C. (1987). Phys. Lett. B 188, 38; Wetterich, C. (1994). Preprint hep-th/9408025 and references therein; Lopez, J., and Nanopoulos, D. V. (1994). Mod. Phys. Lett. A 9, 2755; (1996). ibid. A 11, 1; Zlatev, I., Wang, L.-M., and Steinhardt, P. J. (1998). Preprint astro-ph/9807002.

    Google Scholar 

  5. Witten, E. (1995). Mod. Phys. Lett. A 10, 2153.

    Google Scholar 

  6. Kachru, S., Kumar, J., and Silverstein, E. (1998). Preprint hep-th/9807076; Kachru, S., and Silverstein, E. (1998). Preprint hep-th/9810129.

  7. For a review, see Lineweaver, C. (1998). Preprint astro-ph/9810334.

  8. For a review, see Bahcall, N. A., and Fan, X.-H. (1998). Preprint astro-ph/9804082.

  9. For a review, see Gawiser, E., and Silk, J. (1998). Science 280, 1405.

    Google Scholar 

  10. Super-Kamiokande Collaboration, Y. Fukuda et al. (1998). Phys. Rev. Lett. 81, 1562.

    Google Scholar 

  11. Perlmutter, S., et al. (1997). Preprint astro-ph/9712212; Riess, A. G., et al. (1998). Preprint astro-ph/9805201; Garnavich, P., et al. (1998). Preprint astro-ph/9806396.

  12. Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1997). Mod. Phys. Lett. A 12, 1759; (1997). Int. J. Mod. Phys. A 12, 2639; (1998). ibid. A 13, 1059.

    Google Scholar 

  13. Ellis, J., Kanti, P., Mavromatos, N. E., Nanopoulos, D. V., and Winstanley, E. (1998). Mod. Phys. A 13, 303.

    Google Scholar 

  14. Polchinski, J. (1995). Phys. Rev. Lett. 75, 184; Bachas, C. (1996). Phys. Lett. B 374, 37; Polchinski, J., Chaudhuri, S., and Johnson, C. (1996). Preprint hep-th/9602052 and references therein; Polchinski, J. (1996). Preprint, TASI lectures on D branes, hep-th/9611050, and references therein; Witten, E. (1996). Nucl. Phys. B 460, 335.

    Google Scholar 

  15. Hilbert, D. (1917). Math. Phys. 53, 1.

    Google Scholar 

  16. DeWitt, B. (1962). In Gravitation: An Introduction to Current Research, L. Witten, ed. (Wiley, New York); (1967). Phys. Rev. 160, 1113.

    Google Scholar 

  17. Rovelli, C. (1991). Class. Quantum Grav. 8, 297; ibid. 317; Brown, J. D., and Marolf, D. (1996). Phys. Rev. D 53, 1835.

    Google Scholar 

  18. Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1998). Int. J. Mod. Phys. A 13, 5093.

    Google Scholar 

  19. Kogan, I., Mavromatos, N. E., and Wheater, J. F. (1996). Phys. Lett. B 387, 483.

    Google Scholar 

  20. Gurarie, V. (1993). Nucl. Phys. B 410, 535; Flohr, M. A. I. (1996). Int. J. Mod. Phys. A 11, 4147; (1997). ibid. A 12, 1943; Gaberdiel, M. R., and Kausch, H. G. (1996). Nucl. Phys. B 489, 293; (1996). Phys. Lett. B 386, 131; Rohsiepe, F. (1996). Preprint hep-th/9611160; Kogan, I. I., Lewis, A., and Soloviev, O. A. (1998). Int. J. Mod. Phys. A 13, 1345. For applications relevant to our context, see: Bilal, A., and Kogan, I. (1995). Nucl. Phys. B 449, 569; Kogan, I., and Mavromatos, N. E. (1996). Phys. Lett. B 375, 11; Caux, J. S., Kogan, I., and Tsvelik, A. M. (1996). Nucl. Phys. B 466, 444; Mavromatos, N. E., and Szabo, R. J. (1998). Phys. Lett. B 430, 94; (1999). Phys. Rev. D 59, 104018.

    Google Scholar 

  21. Lizzi, F., and Mavromatos, N. E. (1997). Phys. Rev. D 55, 7859.

    Google Scholar 

  22. David, F. (1988). Mod. Phys. Lett. A 3, 1651; Distler, J., and Kawai, H. (1989). Nucl. Phys. B 321, 509; see also Mavromatos, N. E., and Miramontes, J. L. (1989). Mod. Phys. Lett. A 4, 1847.

    Google Scholar 

  23. Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1992). Phys. Lett. B 293, 37; (1995). Mod. Phys. Lett. A 10, 425; (1994). In Erice Summer School, 31st Course: From Supersymmetry to the Origin of Space-Time (Ettore Majorana Centre, Erice, July 4–12 1993), Subnuclear Series vol. 31, (World Scientific, Singapore ), p.1 (also available as preprint hep-th/9403133).

    Google Scholar 

  24. Ellis, J., Mavromatos, N. E., and Nanopoulos, D. V. (1992). Phys. Lett. B 289, 25.

    Google Scholar 

  25. Fischler, W., and Susskind, L. (1986). Phys. Lett. B 171, 383; (1986). ibid. B 173, 262.

    Google Scholar 

  26. Antoniadis, I., Bachas, C., Ellis, J., and Nanopoulos, D. V. (1988). Phys. Lett. B 211, 383; (1989). Nucl. Phys. B 328, 117.

    Google Scholar 

  27. Zamolodchikov, A. B. (1986). JETP Letters 43, 730.

    Google Scholar 

  28. Wald, R. M. (1984). General Relativity (University of Chicago Press, Chicago).

    Google Scholar 

  29. Lahanas, A. B., and Nanopoulos, D. V. (1987). Phys. Rep. 145, 1, and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellis, J., Mavromatos, N.E. & Nanopoulos, D.V. Time-Dependent Vacuum Energy Induced by \({\mathcal{D}}$$>\)–Particle Recoil. General Relativity and Gravitation 32, 943–958 (2000). https://doi.org/10.1023/A:1001993226227

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1001993226227

Navigation