×

Optimal control of a nonlinear elliptic population system. (English) Zbl 0944.35010

An optimal control for a nonlinear system is considered. The existence of an optimal control pair, the characterization of the optimal control in terms of the optimality system, and the uniqueness of solutions for the control problem are established. The uniqueness requires smallness assumptions on parameters \(\lambda,\mu\), in the payoff-functional defined by \(J: C\subset L^\infty_+ (\Omega) \times L^\infty_+ (\Omega)\to\mathbb{R}\), as: \[ J(d_1, d_2)= \int_\Omega\biggl\{ \lambda u_{d_1,d_2} (x)d_1(x)-\bigl(d_1(x) \bigr)^2+ \mu v_{d_1,d_2}(x) d_2(x)-\bigl(d_2(x) \bigr)^2\biggr\} dx, \] where \(C\) is a convenient convex subset of \(L^\infty_+(\Omega)\times L^\infty_+(\Omega)\) and \((u_{d_1,d_2}, v_{d_1,d_2})\) is the unique coexistence state of the system \[ \begin{aligned} -\Delta u=\sigma(x) v-d_1(x)u-c_2u(u+v)\quad & \text{in }\Omega,\\ -\Delta v=b (x)u- d_2(x)v-c_2 v(u+v)\quad & \text{in }\Omega,\\ {\partial u\over \partial \nu}= {\partial v\over\partial\nu}=0\quad & \text{on }\partial \Omega. \end{aligned} \] {}.

MSC:

35B37 PDE in connection with control problems (MSC2000)
35J65 Nonlinear boundary value problems for linear elliptic equations
49K20 Optimality conditions for problems involving partial differential equations
49J20 Existence theories for optimal control problems involving partial differential equations
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] Clarke, Optimization and nonsmooth analysis 5 (1990) · doi:10.1137/1.9781611971309
[2] DOI: 10.1137/S0363012995293323 · Zbl 0916.49003 · doi:10.1137/S0363012995293323
[3] DOI: 10.1137/1018114 · Zbl 0345.47044 · doi:10.1137/1018114
[4] DOI: 10.1512/iumj.1972.21.21079 · Zbl 0223.35038 · doi:10.1512/iumj.1972.21.21079
[5] Renardy, An introduction to partial differential equations 13 (1993) · Zbl 0917.35001
[6] DOI: 10.1006/jmaa.1993.1091 · Zbl 0796.49005 · doi:10.1006/jmaa.1993.1091
[7] DOI: 10.1016/0362-546X(94)00214-2 · Zbl 0846.35020 · doi:10.1016/0362-546X(94)00214-2
[8] DOI: 10.1007/BF01182789 · Zbl 0820.49011 · doi:10.1007/BF01182789
[9] DOI: 10.1016/0377-0427(94)90357-3 · Zbl 0811.49005 · doi:10.1016/0377-0427(94)90357-3
[10] Gilbarg, Elliptic partial differential equations of second order (1983) · Zbl 0562.35001 · doi:10.1007/978-3-642-61798-0
[11] DOI: 10.1051/cocv:1997100 · Zbl 0868.49004 · doi:10.1051/cocv:1997100
[12] Ekeland, Convex analysis and variational problems 1 (1976)
[13] Krasnosel’skii, Positive solutions of operator equations (1964)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.