×

Modules at boundary points, fiberwise Bergman kernels, and log-subharmonicity. (English) Zbl 07923288

Summary: In this article, we consider Bergman kernels with respect to modules at boundary points, and obtain a log-subharmonicity property of the Bergman kernels, which implies a concavity property related to the Bergman kernels. As applications, we reprove the sharp effectiveness result related to a conjecture posed by M. Jonsson and M. Mustaţă [Ann. Inst. Fourier 62, No. 6, 2145–2209 (2012; Zbl 1272.14016); J. Inst. Math. Jussieu 13, No. 1, 119–144 (2014; Zbl 1314.32047)] and the effectiveness result of strong openness property of the modules at boundary points.

MSC:

32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32D15 Continuation of analytic objects in several complex variables

References:

[1] Bao, SJ; Guan, QA, \(L^2\) extension and effectiveness of strong openness property, Acta Math. Sin. Engl. Ser., 38, 11, 1949-1964, 2022 · Zbl 1505.32016 · doi:10.1007/s10114-022-1220-5
[2] Bao, S.J., Guan, Q.A.: \(L^2\) extension and effectiveness of \(L^p\) strong openness property. https://www.researchgate.net/publication/353802713 (To appear in Acta Math. Sin. Engl. Ser.) · Zbl 1521.32011
[3] Bao, S.J., Guan, Q.A., Yuan, Z.: Boundary points, minimal \(L^2\) integrals and concavity property. arXiv:2203.01648v2 (2022)
[4] Berndtsson, B., Subharmonicity properties of the Bergman kernel and some other functions associated to pseudoconvex domains, Ann. Inst. Fourier (Grenoble), 56, 6, 1633-1662, 2006 · Zbl 1120.32021 · doi:10.5802/aif.2223
[5] Berndtsson, B., Lelong numbers and vector bundles, J. Geom. Anal., 30, 3, 2361-2376, 2020 · Zbl 1457.32023 · doi:10.1007/s12220-017-9873-5
[6] Błocki, Z., Suita conjecture and the Ohsawa-Takegoshi extension theorem, Invent. Math., 193, 1, 149-158, 2013 · Zbl 1282.32014 · doi:10.1007/s00222-012-0423-2
[7] Cao, J.Y.: Ohsawa-Takegoshi extension theorem for compact Kähler manifolds and applications. In: Complex and Symplectic Geometry. Springer INdAM Ser., vol. 21, pp. 19-38. Springer, Cham (2017) · Zbl 1405.32029
[8] Cao, JY; Demailly, J-P; Matsumura, S., A general extension theorem for cohomology classes on non reduced analytic subspaces, Sci. China Math., 60, 6, 949-962, 2017 · Zbl 1379.32017 · doi:10.1007/s11425-017-9066-0
[9] Darvas, T.; Di Nezza, E.; Lu, HC, Monotonicity of nonpluripolar products and complex Monge-Ampère equations with prescribed singularity, Anal. PDE, 11, 8, 2049-2087, 2018 · Zbl 1396.32011 · doi:10.2140/apde.2018.11.2049
[10] Darvas, T.; Di Nezza, E.; Lu, HC, The metric geometry of singularity types, J. Reine Angew. Math., 771, 137-170, 2021 · Zbl 1503.32029 · doi:10.1515/crelle-2020-0019
[11] Demailly, J.-P.: Complex Analytic and Differential Geometry. Electronically accessible at https://www-fourier.ujf-grenoble.fr/ demailly/manuscripts/agbook.pdf
[12] Demailly, J-P, Analytic Methods in Algebraic Geometry, 2010, Beijing: Higher Education Press, Beijing
[13] Demailly, J.-P.: Multiplier ideal sheaves and analytic methods in algebraic geometry. In: School on Vanishing Theorems and Effective Result in Algebraic Geometry (Trieste, 2000). ICTP lECT. Notes, vol. 6, pp. 1-148. Abdus Salam Int. Cent. Theoret. Phys., Trieste (2001) · Zbl 1102.14300
[14] Demailly, J-P; Ein, L.; Lazarsfeld, R., A subadditivity property of multiplier ideals, Michigan Math. J., 48, 137-156, 2000 · Zbl 1077.14516 · doi:10.1307/mmj/1030132712
[15] Demailly, J-P; Kollár, J., Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4), 34, 4, 525-556, 2001 · Zbl 0994.32021 · doi:10.1016/S0012-9593(01)01069-2
[16] Demailly, J-P; Peternell, T., A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds, J. Differential Geom., 63, 2, 231-277, 2003 · Zbl 1077.32504 · doi:10.4310/jdg/1090426678
[17] Fornæss, JE; Wu, JJ, A global approximation result by Bert Alan Taylor and the strong openness conjecture in \(\mathbb{C}^n\), J. Geom. Anal., 28, 1, 1-12, 2018 · Zbl 1404.32001 · doi:10.1007/s12220-017-9768-5
[18] Fornæss, JE; Wu, JJ, Weighted approximation in \(\mathbb{C} \), Math. Z., 294, 3-4, 1051-1064, 2020 · Zbl 1441.30039 · doi:10.1007/s00209-019-02321-w
[19] Guan, Q.A., Mi, Z.T., Yuan, Z.: Boundary points, minimal \(L^2\) integrals and concavity property II: on weakly pseudoconvex Kähler manifolds. arXiv:2203.07723v2 (2022) · Zbl 07890811
[20] Guan, QA; Zhou, XY, Optimal constant problem in the \(L^2\) extension theorem, C. R. Acad. Sci. Paris, 350, 15-16, 753-756, 2012 · Zbl 1256.32009 · doi:10.1016/j.crma.2012.08.007
[21] Guan, QA; Zhou, XY, Optimal constant in an \(L^2\) extension problem and a proof of a conjecture of Ohsawa, Sci. China Math., 58, 1, 35-59, 2015 · Zbl 1484.32015 · doi:10.1007/s11425-014-4946-4
[22] Guan, QA; Zhou, XY, A solution of an \(L^2\) extension problem with an optimal estimate and applications, Ann. of Math. (2), 181, 3, 1139-1208, 2015 · Zbl 1348.32008 · doi:10.4007/annals.2015.181.3.6
[23] Guan, QA; Zhou, XY, Effectiveness of Demailly’s strong openness conjecture and related problems, Invent. Math., 202, 2, 635-676, 2015 · Zbl 1333.32014 · doi:10.1007/s00222-014-0575-3
[24] Guan, QA; Zhou, XY, A proof of Demailly’s strong openness conjecture, Ann. of Math. (2), 182, 2, 605-616, 2015 · Zbl 1329.32016 · doi:10.4007/annals.2015.182.2.5
[25] Guan, QA; Zhou, XY, Restriction formula and subadditivity property related to multiplier ideal sheaves, J. Reine Angew. Math., 769, 1-33, 2020 · Zbl 1457.32090 · doi:10.1515/crelle-2019-0043
[26] Guenancia, H., Toric plurisubharmonic functions and analytic adjoint ideal sheaves, Math. Z., 271, 3-4, 1011-1035, 2012 · Zbl 1255.32014 · doi:10.1007/s00209-011-0900-0
[27] Jonsson, M.; Mustaţă, M., Valuations and asymptotic invariants for sequences of ideals, Ann. Inst. Fourier (Grenoble), 62, 6, 2145-2209, 2012 · Zbl 1272.14016 · doi:10.5802/aif.2746
[28] Jonsson, M.; Mustaţă, M., An algebraic approach to the openness conjecture of Demailly and Kollár, J. Inst. Math. Jussieu, 13, 1, 119-144, 2014 · Zbl 1314.32047 · doi:10.1017/S1474748013000091
[29] Kim, D., Skoda division of line bundle sections and pseudo-division, Internat. J. Math., 27, 5, 1650042, 2016 · Zbl 1350.32024 · doi:10.1142/S0129167X16500427
[30] Kim, D.; Seo, H., Jumping numbers of analytic multiplier ideals (with an appendix by Sebastien Boucksom), Ann. Polon. Math., 124, 3, 257-280, 2020 · Zbl 1452.32037 · doi:10.4064/ap190529-19-12
[31] Lazarsfeld, R.: Positivity in Algebraic Geometry. I. Classical Setting: Line Bundles and Linear Series. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48. Springer-Verlag, Berlin (2004) · Zbl 1093.14501
[32] Lazarsfeld, R.: Positivity in Algebraic Geometry. II. Positivity for vector bundles, and multiplier ideals. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 49. Springer-Verlag, Berlin (2004) · Zbl 1093.14500
[33] Nadel, A., Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature, Ann. of Math. (2), 132, 3, 549-596, 1990 · Zbl 0731.53063 · doi:10.2307/1971429
[34] Ohsawa, T.: \(L^2\) Approaches in Several Complex Variables. Towards the Oka-Cartan Theory with Precise Bounds, 2nd edn. Springer Monographs in Mathematics, Springer, Tokyo (2018) · Zbl 1439.32003
[35] Siu, Y.-T.: The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi. In: Geometric Complex Analysis (Hayama, 1995), pp. 223-277. World Sci. Publ., River Edge, NJ (1996)
[36] Siu, Y-T, Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A, 48, suppl., 1-31, 2005 · Zbl 1131.32010 · doi:10.1007/BF02884693
[37] Siu, Y.-T.: Dynamic multiplier ideal sheaves and the construction of rational curves in Fano manifolds. In: Complex Analysis and Digital Geometry. Acta Univ. Upsaliensis Skr. Uppsala Univ. C Organ. Hist., vol. 86, pp. 323-360. Uppsala Universitet, Uppsala (2009) · Zbl 1201.14013
[38] Tian, G., On Kähler-Einstein metrics on certain Kähler manifolds with \(C_1(M)>0\), Invent. Math., 89, 2, 225-246, 1987 · Zbl 0599.53046 · doi:10.1007/BF01389077
[39] Zhou, XY; Zhu, LF, An optimal \(L^2\) extension theorem on weakly pseudoconvex Kähler manifolds, J. Differential Geom., 110, 1, 135-186, 2018 · Zbl 1426.53082 · doi:10.4310/jdg/1536285628
[40] Zhou, XY; Zhu, LF, Siu’s lemma, optimal \(L^2\) extension and applications to twisted pluricanonical sheaves, Math. Ann., 377, 1-2, 675-722, 2020 · Zbl 1452.32014 · doi:10.1007/s00208-018-1783-8
[41] Zhou, XY; Zhu, LF, Optimal \(L^2\) extension of sections from subvarieties in weakly pseudoconvex manifolds, Pacific J. Math., 309, 2, 475-510, 2020 · Zbl 1458.32013 · doi:10.2140/pjm.2020.309.475
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.