×

Nonlinear periodic waves on the Einstein cylinder. (English) Zbl 07920255

Summary: Motivated by the study of small amplitude nonlinear waves in the anti-de Sitter spacetime and in particular the conjectured existence of periodic in time solutions to the Einstein equations, we construct families of arbitrary small time-periodic solutions to the conformal cubic wave equation and the spherically symmetric Yang-Mills equations on the Einstein cylinder \(\mathbb{R} \times \mathbb{S}^3\). For the conformal cubic wave equation, we consider both spherically symmetric solutions and complex-valued aspherical solutions with an ansatz relying on the Hopf fibration of the \(3\)-sphere. In all three cases, the equations reduce to \(1+1\) semilinear wave equations.
Our proof relies on a theorem of Bambusi-Paleari for which the main assumption is the existence of a seed solution, given by a nondegenerate zero of a nonlinear operator associated with the resonant system. For the problems that we consider, such seed solutions are simply given by the mode solutions of the linearized equations. Provided that the Fourier coefficients of the systems can be computed, the nondegeneracy conditions then amount to solving infinite dimensional linear systems. Since the eigenfunctions for all three cases studied are given by Jacobi polynomials, we derive the different Fourier and resonant systems using linearization and connection formulas as well as integral transformation of Jacobi polynomials.
In the Yang-Mills case, the original version of the theorem of Bambusi-Paleari is not applicable because the nonlinearity of smallest degree is nonresonant. The resonant terms are then provided by the next order nonlinear terms with an extra correction due to backreaction terms of the smallest degree of nonlinearity, and we prove an analogous theorem in this setting.

MSC:

35Q75 PDEs in connection with relativity and gravitational theory
83C57 Black holes
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
81T13 Yang-Mills and other gauge theories in quantum field theory
35P05 General topics in linear spectral theory for PDEs
35B10 Periodic solutions to PDEs

Software:

DLMF

References:

[1] 10.1088/0264-9381/23/23/021 · Zbl 1107.83015 · doi:10.1088/0264-9381/23/23/021
[2] 10.1007/s003320010010 · Zbl 0994.37040 · doi:10.1007/s003320010010
[3] 10.1063/1.4940134 · Zbl 1341.58004 · doi:10.1063/1.4940134
[4] 10.1007/s00220-003-0972-8 · Zbl 1072.35015 · doi:10.1007/s00220-003-0972-8
[5] 10.1016/j.na.2003.11.001 · Zbl 1064.35119 · doi:10.1016/j.na.2003.11.001
[6] 10.1215/S0012-7094-06-13424-5 · Zbl 1103.35077 · doi:10.1215/S0012-7094-06-13424-5
[7] 10.1103/PhysRevD.47.1656 · doi:10.1103/PhysRevD.47.1656
[8] 10.1090/tran/6807 · Zbl 1354.35150 · doi:10.1090/tran/6807
[9] 10.1103/PhysRevLett.107.031102 · doi:10.1103/PhysRevLett.107.031102
[10] 10.1007/s00220-017-2896-8 · Zbl 1378.35300 · doi:10.1007/s00220-017-2896-8
[11] 10.1002/cpa.21815 · Zbl 1417.58021 · doi:10.1002/cpa.21815
[12] 10.3934/dcds.2020001 · Zbl 1441.37082 · doi:10.3934/dcds.2020001
[13] 10.1007/BF02560007 · Zbl 0595.35074 · doi:10.1007/BF02560007
[14] 10.1063/5.0026015 · Zbl 1454.81094 · doi:10.1063/5.0026015
[15] 10.1007/s00023-023-01393-z · Zbl 07862375 · doi:10.1007/s00023-023-01393-z
[16] 10.1103/PhysRevLett.121.021103 · doi:10.1103/PhysRevLett.121.021103
[17] 10.1088/0264-9381/6/12/007 · Zbl 0698.53040 · doi:10.1088/0264-9381/6/12/007
[18] 10.1016/0022-1236(83)90049-6 · Zbl 0535.58022 · doi:10.1016/0022-1236(83)90049-6
[19] ; Christodoulou, Demetrios; Klainerman, Sergiu, The global nonlinear stability of the Minkowski space. Princeton Math. Ser., 41, 1993 · Zbl 0827.53055
[20] 10.4310/AJM.1997.v1.n3.a4 · Zbl 0912.58039 · doi:10.4310/AJM.1997.v1.n3.a4
[21] 10.3842/SIGMA.2016.071 · Zbl 1344.30003 · doi:10.3842/SIGMA.2016.071
[22] 10.1007/JHEP10(2014)048 · Zbl 1333.83045 · doi:10.1007/JHEP10(2014)048
[23] 10.1007/JHEP10(2015)080 · Zbl 1388.83213 · doi:10.1007/JHEP10(2015)080
[24] 10.1007/JHEP10(2015)079 · Zbl 1388.83214 · doi:10.1007/JHEP10(2015)079
[25] 10.1088/1361-6382/ac1b46 · Zbl 1479.83019 · doi:10.1088/1361-6382/ac1b46
[26] 10.1007/jhep04(2016)054 · Zbl 1388.83232 · doi:10.1007/jhep04(2016)054
[27] 10.1103/PhysRevD.92.025036 · doi:10.1103/PhysRevD.92.025036
[28] 10.1007/BF01205488 · Zbl 0659.53056 · doi:10.1007/BF01205488
[29] 10.1007/s00220-019-03601-6 · Zbl 1448.83003 · doi:10.1007/s00220-019-03601-6
[30] 10.2140/apde.2020.13.1671 · Zbl 1452.83009 · doi:10.2140/apde.2020.13.1671
[31] 10.1007/s00222-022-01152-7 · Zbl 07661328 · doi:10.1007/s00222-022-01152-7
[32] ; NIST handbook of mathematical functions, 2010 · Zbl 1198.00002
[33] 10.1007/PL00001582 · Zbl 0996.35046 · doi:10.1007/PL00001582
[34] 10.1002/cpa.3160310103 · doi:10.1002/cpa.3160310103
[35] 10.1002/cpa.3160310203 · Zbl 0358.70014 · doi:10.1002/cpa.3160310203
[36] 10.4153/CJM-1981-072-9 · Zbl 0423.33003 · doi:10.4153/CJM-1981-072-9
[37] 10.1016/S0893-9659(00)00146-4 · Zbl 0978.33003 · doi:10.1016/S0893-9659(00)00146-4
[38] 10.1007/978-3-540-38645-2 · doi:10.1007/978-3-540-38645-2
[39] 10.1002/cpa.3160380516 · Zbl 0597.35101 · doi:10.1002/cpa.3160380516
[40] ; Szegő, Gábor, Orthogonal polynomials. Amer. Math. Soc. Colloq. Publ., 23, 1975 · Zbl 0305.42011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.