×

Conformal flow on \(\mathrm{S}^{3}\) and weak field integrability in \(\mathrm{AdS}_{4}\). (English) Zbl 1378.35300

Authors’ abstract: We consider the conformally invariant cubic wave equation on the Einstein cylinder \(\mathbb{R} \times \mathbb{S}^3\) for small rotationally symmetric initial data. This simple equation captures many key challenges of nonlinear wave dynamics in confining geometries, while a conformal transformation relates it to a self-interacting conformally coupled scalar in four-dimensional anti-de Sitter spacetime (\(\mathrm{AdS}_4\)) and connects it to various questions of AdS stability. We construct an effective infinite-dimensional time-averaged dynamical system accurately approximating the original equation in the weak field regime. It turns out that this effective system, which we call the conformal flow, exhibits some remarkable features, such as low-dimensional invariant subspaces, a wealth of stationary states (for which energy does not flow between the modes), as well as solutions with nontrivial exactly periodic energy flows. Based on these observations and close parallels to the cubic Szegő equation, which was shown by Gérard and Grellier to be Lax-integrable, it is tempting to conjecture that the conformal flow and the corresponding weak field dynamics in \(\mathrm{AdS}_4\) are integrable as well.

MSC:

35Q75 PDEs in connection with relativity and gravitational theory
35Q55 NLS equations (nonlinear Schrödinger equations)
35B35 Stability in context of PDEs
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83F05 Relativistic cosmology
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)

References:

[1] Zakharov V.E., L’vov V.S., Falkovich G.: Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer, Berlin (1992) · Zbl 0786.76002 · doi:10.1007/978-3-642-50052-7
[2] Nazarenko S.: Wave Turbulence. Springer, Berlin (2011) · Zbl 1220.76006 · doi:10.1007/978-3-642-15942-8
[3] Colliander, J., Keel, M., Staffilani, G., Takaoka, H., Tao, T.: Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math. 181, 39 (2010). arXiv:0808.1742 [math.AP] · Zbl 1197.35265
[4] Hani, Z.: Long-time instability and unbounded Sobolev orbits for some periodic nonlinear Schrödinger equations. Arch. Ration. Mech. Anal. 211, 929 (2014). arXiv:1210.7509 [math.AP] · Zbl 1293.35298
[5] Guardia, M., Kaloshin, V.: Growth of Sobolev norms in the cubic defocusing nonlinear Schrödinger equation. J. Eur. Math. Soc. 17, 71 (2015). arXiv:1205.5188 [math.AP] · Zbl 1311.35284
[6] Bizoń, P., Rostworowski, A.: On weakly turbulent instability of anti-de Sitter space. Phys. Rev. Lett. 107, 031102 (2011). arXiv:1104.3702 [gr-qc]
[7] Bizoń, P.: Is AdS stable? Gen. Rel. Grav. 46, 1724 (2014). arXiv:1312.5544 [gr-qc] · Zbl 1291.83003
[8] Craps, B., Evnin, O.: AdS (in)stability: an analytic approach. Fortsch. Phys. 64, 336 (2016). arXiv:1510.07836 [gr-qc] · Zbl 1339.83027
[9] Basu, P., Krishnan, C., Saurabh, A.: A stochasticity threshold in holography and the instability of AdS. Int. J. Mod. Phys. A 30, 1550128 (2015). arXiv:1408.0624 [hep-th]
[10] Murdock J.A.: Perturbations: Theory and Methods. SIAM, Philadelphia (1987) · Zbl 0927.34040
[11] Kuksin, S., Maiocchi, A.: The effective equation method. In: New Approaches to Nonlinear Waves. Springer, Berlin (2016). arXiv:1501.04175 [math-ph]
[12] Balasubramanian, V., Buchel, A., Green, S. R., Lehner, L., Liebling, S. L.: Holographic thermalization, stability of anti-de Sitter space, and the Fermi-Pasta-Ulam paradox. Phys. Rev. Lett. 113, 071601 (2014). arXiv:1403.6471 [hep-th]
[13] Craps, B., Evnin, O., Vanhoof, J.: Renormalization group, secular term resummation and AdS (in)stability. JHEP 1410 (2014) 48. arXiv:1407.6273 [gr-qc] · Zbl 1333.83045
[14] Craps, B., Evnin, O., Vanhoof, J.: Renormalization, averaging, conservation laws and AdS (in)stability. JHEP 1501 (2015) 108. arXiv:1412.3249 [gr-qc]
[15] Lakshmanan, M.; Sahadevan, R., Painlevé analysis, Lie symmetries and integrability of coupled nonlinear oscillators of polynomial type, Phys. Rep., 224, 1, (1993) · doi:10.1016/0370-1573(93)90081-N
[16] Bruschi, M.; Calogero, F., Integrable systems of quartic oscillators, Phys. Lett. A, 273, 173, (2000) · Zbl 1115.70304 · doi:10.1016/S0375-9601(00)00481-3
[17] Bruschi, M., Calogero, F.: Integrable systems of quartic oscillators II. Phys. Lett. A 327, 320 (2004). arXiv:nlin/0403011 [nlin.SI] · Zbl 1138.70336
[18] Gérard, P., Grellier, S.: The cubic Szegő equation. Ann. Scient. Éc. Norm. Sup. 43, 761 (2010). arXiv:0906.4540 [math.CV] · Zbl 1228.35225
[19] Gérard, P., Grellier, S.: Effective integrable dynamics for a certain nonlinear wave equation. Anal. PDE 5, 1139 (2012). arXiv:1110.5719 [math.AP] · Zbl 1268.35013
[20] Gérard, P., Grellier, S.: An explicit formula for the cubic Szegő equation. Trans. Am. Math. Soc. 367, 2979 (2015). arXiv:1304.2619 [math.AP] · Zbl 1318.37024
[21] Gérard, P., Grellier, S.: The cubic Szegő equation and Hankel operators. arXiv:1508.06814 [math.AP] · Zbl 1410.37001
[22] Majda, A.J.; McLaughlin, D.W.; Tabak, E.G., A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., 7, 9, (1997) · Zbl 0882.76035 · doi:10.1007/BF02679124
[23] Hani, Z., Thomann, L.: Asymptotic behavior of the nonlinear Schrödinger equation with harmonic trapping. Commun. Pur. App. Math. 69, 1727 (2016). arXiv:1408.6213 [math.AP] · Zbl 1365.35153
[24] Faou, E., Germain, P., Hani, Z.: The weakly nonlinear large box limit of the 2D cubic nonlinear Schrödinger equation. J. Am. Math. Soc. 29, 915 (2016). arXiv:1308.6267 [math.AP] · Zbl 1364.35332
[25] Germain, P., Hani, Z., Thomann, L.: On the continuous resonant equation for NLS: I. Deterministic analysis. J. Math. Pure Appl. 105, 131 (2016). arXiv:1501.03760 [math.AP] · Zbl 1344.35133
[26] Germain, P., Thomann, L.: On the high frequency limit of the LLL equation. Quart. Appl. Math. 74, 633 (2016). arXiv:1509.09080 [math.AP] · Zbl 1348.37100
[27] Beisert, N. et al.: Review of AdS/CFT integrability: an overview. Lett. Math. Phys. 99, 3 (2012). arXiv:1012.3982 [hep-th]
[28] Yang, I-S.: Missing top of the AdS resonance structure. Phys. Rev. D 91, 065011 (2015). arXiv:1501.00998 [hep-th]
[29] Evnin, O., Nivesvivat, R.: AdS perturbations, isometries, selection rules and the Higgs oscillator. JHEP 1601, 151 (2016). arXiv:1512.00349 [hep-th] · Zbl 1388.83233
[30] Garnett J.B.: Bounded Analytic Functions. Springer, Berlin (2007) · Zbl 0469.30024
[31] Green, S. R., Maillard, A., Lehner, L., Liebling, S. L.: Islands of stability and recurrence times in AdS. Phys. Rev. D 92, 084001 (2015). arXiv:1507.08261 [gr-qc]
[32] Craps, B., Evnin, O., Jai-akson, P., Vanhoof, J.: Ultraviolet asymptotics for quasiperiodic AdS_{4} perturbations. JHEP 1510, 080 (2015). arXiv:1508.05474 [gr-qc] · Zbl 1388.83213
[33] Maliborski, M., Rostworowski, A.: Time-periodic solutions in an Einstein AdS-Massless-Scalar-Field system. Phys. Rev. Lett. 111, 051102 (2013). arXiv:1303.3186 [gr-qc]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.