×

A note on the inhomogeneous fractional nonlinear Schrödinger equation. (English) Zbl 07919193

Summary: This paper investigates some well-posedness issues of the fractional inhomogeneous Schrödinger equation \[ i\dot{u}-(-\Delta)^\gamma u=\pm |x|^\rho |u|^{p-1}u, \] where \(0 < \gamma < 1\) and \(\rho < 0\). Here, one considers the inter-critical regime \(0 < s_c := \frac{N}{2}-\frac{2\gamma + \rho}{p-1} < \gamma\), where \(s_c\) is the energy critical exponent, which is the only one real number satisfying \(\|\kappa^\frac{2\gamma+\rho}{p-1} u_0 (\kappa \cdot)\|_{\dot{H}^{s_c}} = \|u_0\|_{\dot{H}^{s_c}}\). In order to avoid a loss of regularity in Strichartz estimates, one assumes that the datum is spherically symmetric. First, using a sharp Gagliardo-Nirenberg-type estimate, one develops a local theory in the space \(\dot{H}^\gamma \cap \dot{H}^{s_c}\). Then, one investigates the \(L^{\frac{N(p-1)}{\rho+2\gamma}}\) concentration of finite-time blow-up solutions bounded in \(\dot{H}^{s_c}\). Finally, one proves the existence of non-global solutions with negative energy. Since one considers the homogeneous Sobolev space \(\dot{H}^{s_c}\), the main difficulty here is to avoid the mass conservation law.

MSC:

35Q55 NLS equations (nonlinear Schrödinger equations)
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

References:

[1] Akrivis, G.D., Dougalis, V.A., Karakashian, O.A., Mckinney, W.R.: Numerical Approximation of Singular Solution of the Damped Non-linear Schrödinger Equation, ENUMATH 97 (Heidelberg). World Scientific River Edge, NJ, pp. 117-124 (1998) · Zbl 0963.65527
[2] Barashenkov, IV; Alexeeva, NV; Zemlianaya, EV, Two and three dimensional oscillons in non-linear Faradey resonance, Phys. Rev. Lett., 89, 10, 101-104, 2002 · doi:10.1103/PhysRevLett.89.104101
[3] Boulenger, T.; Himmelsbach, D.; Lenzmann, E., Blow-up for fractional NLS, J. Funct. Anal., 271, 2569-2603, 2016 · Zbl 1348.35038 · doi:10.1016/j.jfa.2016.08.011
[4] Cardoso, M.; Farah, LG; Guzman, CM, On well-posedness and concentration of blow-up solutions for the intercritical inhomogeneous NLS equation, J. Dyn. Diff. Equ., 35, 1337-1367, 2023 · Zbl 1517.35201 · doi:10.1007/s10884-021-10045-x
[5] Christ, M.; Weinstein, M., Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation, J. Funct. Anal., 100, 87-109, 1991 · Zbl 0743.35067 · doi:10.1016/0022-1236(91)90103-C
[6] Gill, TS, Optical guiding of laser beam in nonuniform plasma, Pramana J. Phys., 55, 845-852, 2000 · doi:10.1007/s12043-000-0051-z
[7] Guo, Z.; Wang, Y., Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to non-linear Schrödinger and wave equations, J. Anal. Math., 124, 1, 1-38, 2014 · Zbl 1308.35271 · doi:10.1007/s11854-014-0025-6
[8] Laskin, N., Fractional quantum mechanics and Lévy path integrals, Phys. Lett., 268 A, 298-304, 2000 · Zbl 0948.81595 · doi:10.1016/S0375-9601(00)00201-2
[9] Laskin, N., Fractional Schrödinger equation, Phys. Rev., E66, 056108, 2002
[10] Lions, PL, Symetrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 315-334, 1982 · Zbl 0501.46032 · doi:10.1016/0022-1236(82)90072-6
[11] Liu, CS; Tripathi, VK, Laser guiding in an axially nonuniform plasma channel, Phys. Plasmas, 1, 3100-3103, 1994 · doi:10.1063/1.870501
[12] Nirenberg, L., On elliptic partial differential equations, Ann. Sc. Norm. Super Pisa Cl. Sci., 13, 116-162, 1955 · Zbl 0088.07601
[13] Peng, C.; Zhao, D., Global existence and blow-up on the energy space for the inhomogeneous fractional non-linear Schrödinger equation, Discr. Continuous Dyn. Syst. B, 24, 7, 3335-3356, 2019 · Zbl 1420.35373 · doi:10.3934/dcdsb.2018323
[14] Peng, C.; Zhang, Y.; Ma, C., Blow-up dynamics of \(L^2\)-critical inhomogeneous fractional non-linear Schrödinger equation, Math. Methods Appl. Sci., 42, 18, 6896-6905, 2019 · Zbl 1434.35191 · doi:10.1002/mma.5795
[15] Saanouni, T., Remarks on the inhomogeneous fractional non-linear Schrödinger equation, J. Math. Phys., 57, 081503, 2016 · Zbl 1348.35242 · doi:10.1063/1.4960045
[16] Saanouni, T.; Alharbi, T., On the inter-critical inhomogeneous generalized Hartree equation, Arab. J. Math., 11, 557-583, 2022 · Zbl 1500.35263 · doi:10.1007/s40065-022-00384-y
[17] Stein, E.; Weiss, G., Fractional integrals on n-dimensional Euclidean space, J. Math. Mech., 4, 7, 503-514, 1958 · Zbl 0082.27201
[18] Strauss, W., Existence of solitary waves in higher dimensions, Commun. Math. Phys., 55, 2, 149-162, 1977 · Zbl 0356.35028 · doi:10.1007/BF01626517
[19] Tsurumi, T.; Waditi, M., Collapses of wave functions in multidimensional non-linear Schrödinger equations under harmonic potential, J. Phys. Soc. Jpn., 66, 3031-303, 1997 · Zbl 0973.76623 · doi:10.1143/JPSJ.66.3031
[20] Weinstein, MI, Non-linear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., 87, 4, 567-576, 1983 · Zbl 0527.35023 · doi:10.1007/BF01208265
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.