×

Coalescence and sampling distributions for Feller diffusions. (English) Zbl 07856092

Summary: Consider the diffusion process defined by the forward equation \(u_t (t,x) = \frac{1}{2} \{ xu (t,x)\}_{xx} - \alpha \{xu (t,x)\}_x\) for \(t\), \(x \geq 0\) and \(-\infty <\alpha <\infty\), with an initial condition \(u(0,x) = \delta (x-x_0)\). This equation was introduced and solved by Feller to model the growth of a population of independently reproducing individuals. We explore important coalescent processes related to Feller’s solution. For any \(\alpha\) and \(x_0 >0\) we calculate the distribution of the random variable \(A_n (s;t)\), defined as the finite number of ancestors at a time \(s\) in the past of a sample of size \(n\) taken from the infinite population of a Feller diffusion at a time \(t\) since its initiation. In a subcritical diffusion we find the distribution of population and sample coalescent trees from time \(t\) back, conditional on non-extinction as \(t \to \infty\). In a supercritical diffusion we construct a coalescent tree which has a single founder and derive the distribution of coalescent times.

MSC:

92-XX Biology and other natural sciences

References:

[1] Abramowitz, M.; Stegun, I. A., Handbook of Mathematical Functions: with Formulas, Graphs, and Mathematical Tables (1965), Dover Publications: Dover Publications New York · Zbl 0515.33001
[2] Aldous, D.; Popovic, L., A critical branching process model for biodiversity. Adv. Appl. Probab., 1094-1115 (2005) · Zbl 1099.92053
[3] Athreya, K. B.; Ney, P. E., Branching Processes (1972), Springer Berlin Heidelberg · Zbl 0259.60002
[4] Baake, E.; Wakolbinger, A., Feller’s contributions to mathematical biology
[5] Burden, C. J.; Griffiths, R. C., The stationary distribution of a sample from the Wright-Fisher diffusion model with general small mutation rates. J. Math. Biol., 1211-1224 (2019) · Zbl 1409.92165
[6] Burden, C. J.; Griffiths, R. C., The stationary and quasi-stationary properties of neutral multi-type branching process diffusions. Stoch. Models, 1, 185-218 (2023) · Zbl 1506.60089
[7] Burden, C. J.; Simon, H., Genetic drift in populations governed by a Galton-Watson branching process. Theor. Popul. Biol., 63-74 (2016) · Zbl 1349.92099
[8] Burden, C. J.; Soewongsono, A. C., Coalescence in the diffusion limit of a Bienaymé-Galton-Watson branching process. Theor. Popul. Biol., 50-59 (2019) · Zbl 1425.92152
[9] Cox, D. R.; Miller, H. D., The Theory of Stochastic Proceesses (1978), Chapman and Hall: Chapman and Hall London
[10] Crespo, F. F.; Posada, D.; Wiuf, C., Coalescent models derived from birth-death processes. Theor. Popul. Biol., 1-11 (2021) · Zbl 1482.92063
[11] Ewens, W. J., Mathematical Population Genetics, Vol. 27 (2004), Springer: Springer New York · Zbl 1060.92046
[12] Feller, W., Die Grundlagen der Volterraschen Theorie des Kampfes ums Dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Biotheor., 1, 11-40 (1939) · JFM 65.1365.01
[13] Feller, W., Diffusion processes in genetics, 227-246 · Zbl 0045.09302
[14] Feller, W., Two singular diffusion problems. Ann. of Math., 1, 173-182 (1951) · Zbl 0045.04901
[15] Feller, W., An Introduction to Probability Theory and Its Applications, Vol. 1 (1968), Wiley & Sons: Wiley & Sons New York, N.Y. · Zbl 0155.23101
[16] Gan, X.; Waxman, D., Singular solution of the Feller diffusion equation via a spectral decomposition. Phys. Rev. E, 1 (2015)
[17] Gernhard, T., The conditioned reconstructed process. J. Theoret. Biol., 769-778 (2008) · Zbl 1398.92171
[18] Harris, S. C.; Johnston, S. G.; Roberts, M. I., The coalescent structure of continuous-time Galton-Watson trees. Ann. Appl. Probab., 3, 1368-1414 (2020) · Zbl 1472.60141
[19] Ignatieva, A.; Hein, J.; Jenkins, P. A., A characterisation of the reconstructed birth-death process through time rescaling. Theor. Popul. Biol., 61-76 (2020) · Zbl 1516.92085
[20] Johnson, N. L.; Kotz, S.; Balakrishnan, N., Discrete Multivariate Distributions (1997), Wiley: Wiley New York, N.Y. · Zbl 0868.62048
[21] Johnson, N. L.; Kotz, S.; Kemp, A. W., Univariate Discrete Distributions (1993), Wiley: Wiley New York, N.Y.
[22] Karlin, S.; Taylor, H. M., A Second Course in Stochastic Processes (1981), Academic Press: Academic Press New York, N.Y. · Zbl 0469.60001
[23] Kimura, M., Diffusion models in population genetics. J. Appl. Probab., 2, 177-232 (1964) · Zbl 0134.38103
[24] Lambert, A., Quasi-stationary distributions and the continuous-state branching process conditioned to be never extinct. Electron. J. Probab., 420-446 (2007) · Zbl 1127.60082
[25] Nee, S.; May, R. M.; Harvey, P. H., The reconstructed evolutionary process. Philos. Trans. R. Soc. B, 305-311 (1994)
[26] O’Connell, N., The genealogy of branching processes and the age of our most recent common ancestor. Adv. Appl. Probab., 418-442 (1995) · Zbl 0837.60080
[27] Stadler, T., On incomplete sampling under birth-death models and connections to the sampling-based coalescent. J. Theoret. Biol., 58-66 (2009) · Zbl 1403.92267
[28] Wiuf, C., Some properties of the conditioned reconstructed process with Bernoulli sampling. Theor. Popul. Biol., 36-45 (2018) · Zbl 1405.92185
[29] Yaglom, A. M., Certain limit theorems of the theory of branching random processes, 795-798
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.