×

Nitsche-XFEM for a time fractional diffusion interface problem. (English) Zbl 1541.65112

Summary: In this paper, we propose a space-time finite element method for a time fractional diffusion interface problem. This method uses the low-order discontinuous Galerkin (DG) method and the Nitsche extended finite element method (Nitsche-XFEM) for temporal and spatial discretization, respectively. Sharp pointwise-in-time error estimates in graded temporal grids are derived, without any smoothness assumptions on the solution. Finally, three numerical examples are provided to verify the theoretical results.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations

Software:

CutFEM; DistMesh
Full Text: DOI

References:

[1] Babuška, I., The finite element method for elliptic equations with discontinuous coefficients, Computing, 5, 207-213, 1970 · Zbl 0199.50603 · doi:10.1007/BF02248021
[2] Babuška, I.; Banerjee, U.; Kergrene, K., Strongly stable generalized finite element method: Application to interface problems, Comput Methods Appl Mech Engrg, 327, 58-92, 2017 · Zbl 1439.74385 · doi:10.1016/j.cma.2017.08.008
[3] Bramble, J. H.; King, J. T., A finite element method for interface problems in domains with smooth boundaries and interfaces, Adv Comput Math, 6, 109-138, 1996 · Zbl 0868.65081 · doi:10.1007/BF02127700
[4] Burman, E.; Claus, S.; Hansbo, P., CutFEM: Discretizing geometry and partial differential equations, Internat J Numer Methods Engrg, 104, 472-501, 2015 · Zbl 1352.65604 · doi:10.1002/nme.4823
[5] Cai, Z. Q.; He, C. Y.; Zhang, S., Discontinuous finite element methods for interface problems: Robust a priori and a posteriori error estimates, SIAM J Numer Anal, 55, 400-418, 2017 · Zbl 1359.65248 · doi:10.1137/16M1056171
[6] Chen, S.; Shen, J.; Wang, L. L., Generalized Jacobi functions and their applications to fractional differential equations, Math Comp, 85, 1603-1638, 2016 · Zbl 1335.65066 · doi:10.1090/mcom3035
[7] Chen, Z. M.; Zou, J., Finite element methods and their convergence for elliptic and parabolic interface problems, Numer Math, 79, 175-202, 1998 · Zbl 0909.65085 · doi:10.1007/s002110050336
[8] Cockburn, B.; Mustapha, K., A hybridizable discontinuous Galerkin method for fractional diffusion problems, Numer Math, 130, 293-314, 2015 · Zbl 1329.26013 · doi:10.1007/s00211-014-0661-x
[9] Cuesta, E.; Lubich, C.; Palencia, C., Convolution quadrature time discretization of fractional diffusion-wave equations, Math Comp, 75, 673-696, 2006 · Zbl 1090.65147 · doi:10.1090/S0025-5718-06-01788-1
[10] Delić, A.; Jovanović, B. S., Numerical approximation of an interface problem for fractional in time diffusion equation, Appl Math Comput, 229, 467-479, 2004 · Zbl 1364.65161
[11] Ervin, V. J.; Roop, J. P., Variational formulation for the stationary fractional advection dispersion equation, Numer Methods Partial Differential Equations, 22, 558-576, 2006 · Zbl 1095.65118 · doi:10.1002/num.20112
[12] Hansbo, A.; Hansbo, P., An unfitted finite element method, based on Nitsche’s method, for elliptic interface problems, Comput Methods Appl Mech Engrg, 191, 5537-5552, 2002 · Zbl 1035.65125 · doi:10.1016/S0045-7825(02)00524-8
[13] Huang, P. Q.; Wu, H. J.; Xiao, Y. M., An unfitted interface penalty finite element method for elliptic interface problems, Comput Methods Appl Mech Engrg, 323, 439-460, 2017 · Zbl 1439.74422 · doi:10.1016/j.cma.2017.06.004
[14] Jin, B. T.; Lazarov, R.; Pasciak, J., Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J Numer Anal, 35, 561-582, 2015 · Zbl 1321.65142 · doi:10.1093/imanum/dru018
[15] Jin, B. T.; Lazarov, R.; Zhou, Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J Numer Anal, 51, 445-466, 2013 · Zbl 1268.65126 · doi:10.1137/120873984
[16] Jin, B. T.; Lazarov, R.; Zhou, Z., An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J Numer Anal, 36, 197-221, 2016 · Zbl 1336.65150
[17] Jin, B. T.; Li, B. Y.; Zhou, Z., Discrete maximal regularity of time-stepping schemes for fractional evolution equations, Numer Math, 138, 101-131, 2018 · Zbl 1421.65025 · doi:10.1007/s00211-017-0904-8
[18] Karaa, S., Semidiscrete finite element analysis of time fractional parabolic problems: A unified approach, SIAM J Numer Anal, 56, 1673-1692, 2018 · Zbl 1397.65188 · doi:10.1137/17M1134160
[19] Le, K. N.; McLean, W.; Lamichhane, B., Finite element approximation of a time-fractional diffusion problem for a domain with a re-entrant corner, ANZIAM J, 59, 61-82, 2017 · Zbl 1404.65273
[20] Li, B. J.; Luo, H.; Xie, X. P., Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, SIAM J Numer Anal, 57, 779-798, 2019 · Zbl 1419.65066 · doi:10.1137/18M118414X
[21] Li, B. J.; Wang, T.; Xie, X. P., Analysis of a temporal discretization for a semilinear fractional diffusion equation, Comput Math Appl, 80, 2115-2134, 2020 · Zbl 1454.65035 · doi:10.1016/j.camwa.2020.09.008
[22] Li, B. J.; Wang, T.; Xie, X. P., Numerical analysis of two Galerkin discretizations with graded temporal grids for fractional evolution equations, J Sci Comput, 85, 59, 2020 · Zbl 1456.65116 · doi:10.1007/s10915-020-01365-z
[23] Li, B. J.; Xie, X. P.; Yan, Y. B., L1 scheme for solving an inverse problem subject to a fractional diffusion equation, Comput Math Appl, 134, 112-123, 2023 · Zbl 1538.65318 · doi:10.1016/j.camwa.2023.01.008
[24] Li, X. J.; Xu, C. J., A space-time spectral method for the time fractional diffusion equation, SIAM J Numer Anal, 47, 2108-2131, 2009 · Zbl 1193.35243 · doi:10.1137/080718942
[25] Li, Z. L.; Lin, T.; Wu, X. H., New cartesian grid methods for interface problems using the finite element formulation, Numer Math, 96, 61-98, 2003 · Zbl 1055.65130 · doi:10.1007/s00211-003-0473-x
[26] Liao, H. L.; McLean, W.; Zhang, J. W., A discrete Grönwall inequality with applications to numerical schemes for subdiffusion problems, SIAM J Numer Anal, 57, 218-237, 2019 · Zbl 1414.65008 · doi:10.1137/16M1175742
[27] Lin, Y. M.; Xu, C. J., Finite difference/spectral approximations for the time-fractional diffusion equation, J Comput Phys, 225, 1533-1552, 2007 · Zbl 1126.65121 · doi:10.1016/j.jcp.2007.02.001
[28] Lubich, C.; Sloan, I. H.; Thomée, V., Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math Comp, 65, 1-17, 1996 · Zbl 0852.65138 · doi:10.1090/S0025-5718-96-00677-1
[29] Lunardi, A., Analytic Semigroups and Optimal Regularity in Parabolic Problems, 1995, Basel: Birkhäuser, Basel · Zbl 0816.35001 · doi:10.1007/978-3-0348-0557-5
[30] Lunardi, A., Interpolation Theory, 2018, Pisa: Edizioni della Normale, Pisa · Zbl 1394.46001 · doi:10.1007/978-88-7642-638-4
[31] Luo, H.; Li, B. J.; Xie, X. P., Convergence analysis of a Petrov-Galerkin method for fractional wave problems with nonsmooth data, J Sci Comput, 80, 957-992, 2019 · Zbl 1477.65161 · doi:10.1007/s10915-019-00962-x
[32] McLean, W., Regularity of solutions to a time-fractional diffusion equation, ANZIAM J, 52, 123-138, 2010 · Zbl 1228.35266 · doi:10.1017/S1446181111000617
[33] Metzler, R.; Klafter, J., The random walk’s guide to anomalous diffusion: A fractional dynamics approach, Phys Rep, 339, 1-77, 2000 · Zbl 0984.82032 · doi:10.1016/S0370-1573(00)00070-3
[34] Mustapha, K.; Abdallah, B.; Furati, K. M., A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients, Numer Algorithms, 73, 517-534, 2016 · Zbl 1352.65363 · doi:10.1007/s11075-016-0106-y
[35] Mustapha, K.; McLean, W., Discontinuous Galerkin method for an evolution equation with a memory term of positive type, Math Comp, 78, 1975-1995, 2009 · Zbl 1198.65195 · doi:10.1090/S0025-5718-09-02234-0
[36] Persson, P. O.; Strang, G., A simple mesh generator in MATLAB, SIAM Rev, 46, 329-345, 2004 · Zbl 1061.65134 · doi:10.1137/S0036144503429121
[37] Ren, J. C.; Liao, H. L.; Zhang, J. W., Sharp H^1-norm error estimates of two time-stepping schemes for reaction-subdiffusion problems, J Comput Appl Math, 389, 113352, 2021 · Zbl 1467.65086 · doi:10.1016/j.cam.2020.113352
[38] Reusken, A.; Nguyen, T. H., Nitsche’s method for a transport problem in two-phase incompressible flows, J Fourier Anal Appl, 15, 663-683, 2009 · Zbl 1404.65180 · doi:10.1007/s00041-009-9092-y
[39] Sakamoto, K.; Yamamoto, M., Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems, J Math Anal Appl, 382, 426-447, 2011 · Zbl 1219.35367 · doi:10.1016/j.jmaa.2011.04.058
[40] Sun, Z. Z.; Wu, X. N., A fully discrete difference scheme for a diffusion-wave system, Appl Numer Math, 56, 193-209, 2006 · Zbl 1094.65083 · doi:10.1016/j.apnum.2005.03.003
[41] Tang, T.; Yu, H. J.; Zhou, T., On energy dissipation theory and numerical stability for time-fractional phase-field equations, SIAM J Sci Comput, 41, A3757-A3778, 2019 · Zbl 1435.65146 · doi:10.1137/18M1203560
[42] Temam, R., Infinite-Dimensional Dynamical System in Mechanics and Physics, 1997, New York: Springer, New York · Zbl 0871.35001 · doi:10.1007/978-1-4612-0645-3
[43] Thomeé, V., Galerkin Finite Element Methods for Parabolic Problems, 2006, Berlin-Heidelberg: Springer-Verlag, Berlin-Heidelberg · Zbl 1105.65102
[44] Xiao, Y. M.; Xu, J. C.; Wang, F., High-order extended finite element methods for solving interface problems, Comput Methods Appl Mech Engrg, 364, 112964, 2020 · Zbl 1442.74243 · doi:10.1016/j.cma.2020.112964
[45] Xu, J. C., Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients (in Chinese), Natur Sci J Xiangtan Univ, 1, 1-5, 1982
[46] Xu J C. Estimate of the convergence rate of finite element solutions to elliptic equations of second order with discontinuous coefficients. arXiv:1311.4178, 2013
[47] Wang, F.; Zhang, S., Optimal quadratic Nitsche extended finite element method for solving interface problems, J Comput Math, 36, 693-717, 2018 · Zbl 1424.65226 · doi:10.4208/jcm.1703-m2015-0340
[48] Wang, T.; Yang, C. C.; Xie, X. P., A Nitsche-eXtended finite element method for distributed optimal control problems of elliptic interface equations, Comput Methods Appl Math, 20, 379-393, 2020 · Zbl 1436.49006 · doi:10.1515/cmam-2018-0256
[49] Yang, Y.; Chen, Y. P.; Huang, Y. Q., Spectral collocation method for the time-fractional diffusion-wave equation and convergence analysis, Comput Math Appl, 73, 1218-1232, 2017 · Zbl 1412.65168 · doi:10.1016/j.camwa.2016.08.017
[50] Zayernouri, M.; Karniadakis, G. E M., Fractional spectral collocation method, SIAM J Sci Comput, 36, A40-A62, 2014 · Zbl 1294.65097 · doi:10.1137/130933216
[51] Zeng, F. H.; Li, C. P.; Liu, F. W., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J Sci Comput, 35, A2976-A3000, 2013 · Zbl 1292.65096 · doi:10.1137/130910865
[52] Zhao, Y. M.; Chen, P.; Bu, W. P., Two mixed finite element methods for time-fractional diffusion equations, J Sci Comput, 70, 407-428, 2017 · Zbl 1360.65245 · doi:10.1007/s10915-015-0152-y
[53] Zheng, M. L.; Liu, F. W.; Turner, I., A novel high order space-time spectral method for the time fractional Fokker-Planck equation, SIAM J Sci Comput, 37, A701-A724, 2015 · Zbl 1320.82052 · doi:10.1137/140980545
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.