×

Estimates on modulation spaces for Schrödinger operators with time-dependent sub-linear vector potentials. (English) Zbl 1533.35083

Summary: In this paper, we give estimates of the solutions to Schrödinger equation on modulation spaces with vector potential of sub-linear growth.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35K10 Second-order parabolic equations
35B65 Smoothness and regularity of solutions to PDEs

References:

[1] Bényi A., Gröchenig K., Okoudjou K. A. and Rogers L. G., Unimodular Fourier multipliers for modulation spaces. J. Functional Anal. 246 (2007), 366-384. · Zbl 1120.42010
[2] Bhimani D. G., Manna R., Nicola F., Thangavelu S. and Trapasso S. I., Phase space analysis of the Hermite semigroup and applications to nonlin-ear global well-posedness. Adv. Math. 392 (2021), Paper No. 107995, 18. · Zbl 1476.35297
[3] Cordero E., Gröchenig K., Nicola F. and Rodino L., Wiener algebras of Fourier integral operators. J. Math. Pures. Appl. 99 (2013), 219-233. · Zbl 1306.42045
[4] Cordero E., Nicola F. and Rodino L., Schrödinger equations with rough Hamiltonians. Discrete Contin. Dyn. Syst. 35 (2015), 4805-4821. · Zbl 1334.35458
[5] Córdoba A. and Fefferman C., Wave packets and Fourier integral operators. Comm. Partial Differential Equations 3 (1978), 979-1005. · Zbl 0389.35046
[6] Delort J. M., F.B.I. transformation, Lecture Notes in Mathematics, 1522, Springer-Verlag, Berlin (1992). · Zbl 0760.35004
[7] Feichtinger H. G., Modulation Spaces on Locally Compact Abelian Groups (TECHNICAL REPORT), Universität Wien, 1983.
[8] Folland G. B., Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, Princeton, NJ, 1989. · Zbl 0682.43001
[9] Fujiwara D., A construction of the fundamental solution for the Schrödinger equations. Proc. Japan Acad. Ser. A Math. Sci., 55 (1979), 10-14. · Zbl 0421.35018
[10] Gröchenig K., Foundations of Time-Frequency Analysis, Birkhäuser, 2001. · Zbl 0966.42020
[11] Hörmander L., Fourier integral operators. I. Acta Math. 127 (1971), 79-183. · Zbl 0212.46601
[12] Iwabuchi T., Navier-Stokes equations and nonlinear heat equations in mod-ulation spaces with negative derivative indices. J. Differential Equations 248 (2010), 1972-2002. · Zbl 1185.35166
[13] Kato K., Kobayashi M. and Ito S., Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials. J. Functional Anal. 266 (2014), 733-753. · Zbl 1294.35010
[14] Kato K., Kobayashi M. and Ito S., Representation of Schrödinger opera-tor of a free particle via short-time Fourier transform and its applications. Tohoku Math. J. 64 (2012), 223-231. · Zbl 1246.35171
[15] Kato T., Remarks on Schrödinger operators with vector potentials. Integral Equations Operator Theory 1 (1978), 103-113. · Zbl 0395.47023
[16] Kobayashi M. and Sugimoto M., The inclusion relation between Sobolev and modulation spaces. J. Functional Anal. 260 (2011), 3189-3208. · Zbl 1232.46033
[17] Leinfelder H. and Simader C. G., Schrödinger operators with singular mag-netic vector potentials. Math. Z. 176 (1981), 1-19. · Zbl 0468.35038
[18] Muramatsu R., Estimates on modulation spaces for Schrödinger operators with first order magnetic fields. SUT Journal of Mathematics 57 (2021), 201-209. · Zbl 1486.35161
[19] Nicola F., Phase space analysis of semilinear parabolic equations. J. Funct. Anal. 267 (2014), 727-743. · Zbl 1296.35225
[20] Simon B., Schrödinger operators with singular magnetic vector potentials. Math. Z. 131 (1973), 361-370. · Zbl 0277.47006
[21] Staffilani G. and Tataru D., Strichartz estimates for a Schrödinger opera-tor with nonsmooth coefficients. Comm. Partial Differential Equations 27 (2002), 1337-1372. · Zbl 1010.35015
[22] Tataru D., Phase space transforms and microlocal analysis (Phase space analysis of partial differential equations). Pubbl. Cent. Ric. Mat. Ennio Giorgi, II, 505-524, Scuola Norm. Sup., Pisa, 2004. · Zbl 1111.35143
[23] Tataru D., Parametrices and dispersive estimates for Schrödinger operators with variable coefficients. Amer. J. Math. 130 (2008), 571-634. · Zbl 1159.35315
[24] Wang B. and Hudzik H., The global Cauchy problem for the NLS and NLKG with small rough data. J. Differential Equations 232 (2007), 36-73. · Zbl 1121.35132
[25] Wang B., Zhao L. and Guo B., Isometric decomposition operators, function spaces E λ p,q and applications to nonlinear evolution equations. J. Functional Anal. 233 (2006), 1-39. · Zbl 1099.46023
[26] Yajima K., Schrödinger evolution equations with magnetic fields. J. Analyse Math. 56 (1991), 29-76. · Zbl 0739.35083
[27] Zworski M., Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, Providence, RI, 2012. · Zbl 1252.58001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.