×

Dubrovin method and the Toda chain. (English. Russian original) Zbl 1537.37083

St. Petersbg. Math. J. 34, No. 6, 1019-1037 (2023); translation from Algebra Anal. 34, No. 6, 170-196 (2022).
Summary: A hierarchy of Lax pairs with \(2\times 2\) matrix coefficients is presented. The compatibility conditions for these pairs include the Toda chain equation, and other differential-difference integrable systems. Various kinds of finite gap solutions for such systems are constructed. Examples of simplest one- and two-phase solutions are given, together with the corresponding spectral curves.

MSC:

37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
37K20 Relations of infinite-dimensional Hamiltonian and Lagrangian dynamical systems with algebraic geometry, complex analysis, and special functions
Full Text: DOI

References:

[1] A. O. Smirnov, V. S. Gerdjikov, and V. B. Matveev, From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy, Eur. Phys. J. Plus. 135 (2020), 561.
[2] A. O. Smirnov, E. G. Filimonova, and V. B. Matveev, The spectral curve method for the Kaup-Newell hierarchy, IOP Conf. Ser. Mat. Sci. Eng. 919 (2020), no. 5, 052051.
[3] A. O. Smirnov, Spectral curves for the derivative nonlinear Schr\"odinger equations, Symmetry 13 (2021), no. 7, 1203.
[4] A. O. Smirnov and A. S. Kolesnikov, Dubrovin’s method and Ablowitz-Kaup-Newell-Segur hierarchy, IOP Conf. Ser. Mat. Sci. Eng. 1181 (2021), 012028.
[5] B. A. Dubrovin, Matrix finite-gap operators, Itogi Nauki i Tekhniki. Current Probl. Math., vol. 23, VINITI, Moscow, 1983, pp. 33-78; English transl., J. Soviet Math. 28 (1985), no. 1, 20-50. 734313 · Zbl 0561.58043
[6] M. Toda, Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan 22 (1967), no. 2, 431-436.
[7] \bysame , Waves in nonlinear lattice, Progr. Theor. Phys. Suppl. 45 (1970), 174-200.
[8] B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Nonlinear equations of Korteweg-de Vries type\textup , finite-band linear operators and Abelian varietes, Uspekhi Mat. Nauk 31 (1976), no. 1, 55-136; English transl., Russian Math. Surveys 31 (1976), no. 1, 59-146. 427869 · Zbl 0346.35025
[9] I. M. Krichever, Algebraic curves and non-linear difference equations, Uspekhi Mat. Nauk 33 (1978), no. 4, 215-216; English transl., Russian Math. Surveys 33 (1978), no. 4, 255-256. 510681 · Zbl 0412.39002
[10] \bysame , Nonlinear equations and elliptic curves, Itogi Nauki i Tekhniki. Current Probl. Math., vol. 23, VINITI, Moscow, 1983, pp. 79-136; English transl., J. Soviet Math. 28 (1985), 51-90. 734314 · Zbl 0595.35087
[11] I. Krichever and K. L. Vaninsky, The periodic and open Toda lattice, AMS/IP Stud. Adv. Math., volume 33, Amer. Math. Soc., Providence, RI, 2002. 1969023 · Zbl 1119.37333
[12] M. Kac and P. van Moerbeke, A complete solution of the periodic Toda problem, Proc. Nat. Acad. Sci. USA 72 (1975), no. 8, 2879-2880. 426538 · Zbl 0343.34004
[13] A. B. J. Kuijlaars, On the finite-gap ansatz in the continuum limit of the Toda lattice, Duke Math. J. 104 (2000), no. 3, 433-462. 1781478 · Zbl 0966.37037
[14] P. A. Damianou and R. L. Fernandes, From the Toda lattice to the Volterra lattice and back, Rep. Math. Phys. 50 (2002), no. 3, 361-378. 1952141 · Zbl 1038.37046
[15] H. Flaschka, Toda lattice. I, Phys. Rev. B 9 (1974), 1924-1925. 408647 · Zbl 0942.37504
[16] \bysame , Toda lattice. II, Progr. Theor. Phys. 51 (1974), 704-716.
[17] S. V. Manakov, Complete integrability and stochastization of discrete dynamical systems, Zh. Eksper. Teoret. Fiz. 67 (1974), no. 2, 543-555; English transl., Sov. Phys. JETP 40 (1974), no. 2, 269-274. 389107
[18] B. A. Dubrovin, Theta functions and non-linear equations, Uspekhi Mat. Nauk 36 (1981), no. 2, 11-80; English transl., Russian Math. Surveys 36 (1981), no. 2, 11-92. 616797 · Zbl 0549.58038
[19] A. O. Smirnov, Finite-gap solutions of Abelian Toda chain of genus \(4\) and \(5\) in elliptic functions, Theoret. Math. Fiz. 78 (1989), no. 1, 11-21; English transl., Theoret. and Math. Phys. 78 (1989), no. 1, 6-13. 987408
[20] H. F. Baker, Abel’s theorem and the allied theory including the theory of theta functions, Cornell Hist. Math Monogr., Cambridge, 1897.
[21] E. D. Belokolos, A. I. Bobenko, V. Z. Enol\textprime skii, A. R. Its, and V. B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1994. · Zbl 0809.35001
[22] M. Abramowitz, I. A. Stegun (Eds.), Handbook of mathematical functions with formulae\textup , graphs and mathematical tables, U.S. Goverment Printing, Washington, D.C., 1972. 0167642 · Zbl 0543.33001
[23] Akhiezer N. I., Elements of the theory of elliptic functions, Nauka, Moscow, 1970; English transl., Transl. Math. Monogr., vol.79, Amer. Math. Soc., Providence, RI, 1990. 1054205 · Zbl 0207.08301
[24] A. O. Smirnov and V. B. Matveev, Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy, Ufimsk. Mat. Zh. 13 (2021), no. 2, 86-103; English transl., Ufa Math. J. 13 (2021), no. 2, 81-98. 4293320 · Zbl 1488.37055
[25] A. O. Smirnov, Elliptic solutions of the nonlinear Schr\"odinger equation and the modified Korteweg-de Vries equation, Mat. Sb. 185 (1994), no. 8, 103-114; English transl., Sb. Math. 82 (1995), no. 2, 461-470. 1302625 · Zbl 0854.35110
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.