Skip to Main Content

St. Petersburg Mathematical Journal

This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.

ISSN 1547-7371 (online) ISSN 1061-0022 (print)

The 2024 MCQ for St. Petersburg Mathematical Journal is 0.68.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Dubrovin method and the Toda chain
HTML articles powered by AMS MathViewer

by V. B. Matveev and A. O. Smirnov;
Translated by: the authors
St. Petersburg Math. J. 34 (2023), 1019-1037
DOI: https://doi.org/10.1090/spmj/1787
Published electronically: January 26, 2024

Abstract:

A hierarchy of Lax pairs with $2\times 2$ matrix coefficients is presented. The compatibility conditions for these pairs include the Toda chain equation, and other differential-difference integrable systems. Various kinds of finite gap solutions for such systems are constructed. Examples of simplest one- and two-phase solutions are given, together with the corresponding spectral curves.
References
  • A. O. Smirnov, V. S. Gerdjikov, and V. B. Matveev, From generalized Fourier transforms to spectral curves for the Manakov hierarchy. II. Spectral curves for the Manakov hierarchy, Eur. Phys. J. Plus. 135 (2020), 561.
  • A. O. Smirnov, E. G. Filimonova, and V. B. Matveev, The spectral curve method for the Kaup–Newell hierarchy, IOP Conf. Ser. Mat. Sci. Eng. 919 (2020), no. 5, 052051.
  • A. O. Smirnov, Spectral curves for the derivative nonlinear Schrödinger equations, Symmetry 13 (2021), no. 7, 1203.
  • A. O. Smirnov and A. S. Kolesnikov, Dubrovin’s method and Ablowitz–Kaup–Newell–Segur hierarchy, IOP Conf. Ser. Mat. Sci. Eng. 1181 (2021), 012028.
  • B. A. Dubrovin, Matrix finite-gap operators, Current problems in mathematics, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 33–78 (Russian). MR 734313
  • M. Toda, Vibration of a chain with nonlinear interaction, J. Phys. Soc. Japan 22 (1967), no. 2, 431–436.
  • —, Waves in nonlinear lattice, Progr. Theor. Phys. Suppl. 45 (1970), 174–200.
  • B. A. Dubrovin, V. B. Matveev, and S. P. Novikov, Nonlinear equations of Korteweg-de Vries type, finite-band linear operators and Abelian varieties, Uspehi Mat. Nauk 31 (1976), no. 1(187), 55–136 (Russian). MR 427869
  • Igor Moiseevich Krichever, Algebraic curves and nonlinear difference equations, Uspekhi Mat. Nauk 33 (1978), no. 4(202), 215–216 (Russian). MR 510681
  • Igor Moiseevich Krichever, Nonlinear equations and elliptic curves, Current problems in mathematics, Vol. 23, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1983, pp. 79–136 (Russian). MR 734314
  • I. Krichever and K. L. Vaninsky, The periodic and open Toda lattice, Mirror symmetry, IV (Montreal, QC, 2000) AMS/IP Stud. Adv. Math., vol. 33, Amer. Math. Soc., Providence, RI, 2002, pp. 139–158. MR 1969023, DOI 10.1090/amsip/033/09
  • M. Kac and Pierre van Moerbeke, A complete solution of the periodic Toda problem, Proc. Nat. Acad. Sci. U.S.A. 72 (1975), no. 8, 2879–2880. MR 426538, DOI 10.1073/pnas.72.8.2879
  • A. B. J. Kuijlaars, On the finite-gap ansatz in the continuum limit of the Toda lattice, Duke Math. J. 104 (2000), no. 3, 433–462. MR 1781478, DOI 10.1215/S0012-7094-00-10434-6
  • Pantelis A. Damianou and Rui Loja Fernandes, From the Toda lattice to the Volterra lattice and back, Rep. Math. Phys. 50 (2002), no. 3, 361–378. MR 1952141, DOI 10.1016/S0034-4877(02)80066-0
  • H. Flaschka, The Toda lattice. I. Existence of integrals, Phys. Rev. B (3) 9 (1974), 1924–1925. MR 408647, DOI 10.1103/PhysRevB.9.1924
  • —, Toda lattice. II, Progr. Theor. Phys. 51 (1974), 704–716.
  • S. V. Manakov, Complete integrability and stochastization of discrete dynamical systems, Ž. Èksper. Teoret. Fiz. 67 (1974), no. 2, 543–555 (Russian, with English summary); English transl., Soviet Physics JETP 40 (1974), no. 2, 269–274 (1975). MR 389107
  • B. A. Dubrovin, Theta-functions and nonlinear equations, Uspekhi Mat. Nauk 36 (1981), no. 2(218), 11–80 (Russian). With an appendix by I. M. Krichever. MR 616797
  • A. O. Smirnov, Finite-gap solutions of the abelian Toda lattice of genus $4$ and $5$ in elliptic functions, Teoret. Mat. Fiz. 78 (1989), no. 1, 11–21 (Russian, with English summary); English transl., Theoret. and Math. Phys. 78 (1989), no. 1, 6–13. MR 987408, DOI 10.1007/BF01016911
  • H. F. Baker, Abel’s theorem and the allied theory including the theory of theta functions, Cornell Hist. Math Monogr., Cambridge, 1897.
  • E. D. Belokolos, A. I. Bobenko, V. Z. Enol′skii, A. R. Its, and V. B. Matveev, Algebro-geometric approach to nonlinear integrable equations, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1994.
  • Milton Abramowitz and Irene A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, National Bureau of Standards Applied Mathematics Series, No. 55, U. S. Government Printing Office, Washington, DC, 1964. For sale by the Superintendent of Documents. MR 167642
  • N. I. Akhiezer, Elements of the theory of elliptic functions, Translations of Mathematical Monographs, vol. 79, American Mathematical Society, Providence, RI, 1990. Translated from the second Russian edition by H. H. McFaden. MR 1054205, DOI 10.1090/mmono/079
  • A. O. Smirnov and V. B. Matveev, Finite-gap solutions of nonlocal equations in Ablowitz-Kaup-Newell-Segur hierarchy, Ufa Math. J. 13 (2021), no. 2, 81–98. MR 4293320, DOI 10.13108/2021-13-2-81
  • A. O. Smirnov, Elliptic solutions of the nonlinear Schrödinger equation and a modified Korteweg-de Vries equation, Mat. Sb. 185 (1994), no. 8, 103–114 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 82 (1995), no. 2, 461–470. MR 1302625, DOI 10.1070/SM1995v082n02ABEH003575
Similar Articles
  • Retrieve articles in St. Petersburg Mathematical Journal with MSC (2020): 37K10, 35Q53, 35Q55
  • Retrieve articles in all journals with MSC (2020): 37K10, 35Q53, 35Q55
Bibliographic Information
  • V. B. Matveev
  • Affiliation: St. Petersburg Branch of V. A. Steklov Mathematical Institute, Fontanka 27, 191023 St. Petersburg, Russia; and Institut de Mathematique de Bourgogne, Universite de Bourgogne, 9 Avenue Alain Savary, 21078 Dijon, France
  • MR Author ID: 191115
  • ORCID: 0000-0002-4607-7535
  • Email: vladimir.matveev9@gmail.com
  • A. O. Smirnov
  • Affiliation: St. Petersburg State University of Aerospace Instrumentation, Bolshaya Morskaya, 67A, 190000 St. Petersburg, Russia
  • ORCID: 0000-0002-6781-2105
  • Email: alsmir@guap.ru
  • Received by editor(s): June 13, 2022
  • Published electronically: January 26, 2024
  • Additional Notes: The authors appreciate the financial support provided by the Russian Science Foundation (grant agreement no. 22-11-00196)
  • © Copyright 2024 American Mathematical Society
  • Journal: St. Petersburg Math. J. 34 (2023), 1019-1037
  • MSC (2020): Primary 37K10; Secondary 35Q53, 35Q55
  • DOI: https://doi.org/10.1090/spmj/1787