×

An upwind vertex centred finite volume algorithm for nearly and truly incompressible explicit fast solid dynamic applications: total and updated Lagrangian formulations. (English) Zbl 07785511

Summary: This paper presents an explicit vertex centred finite volume method for the solution of fast transient isothermal large strain solid dynamics via a system of first order hyperbolic conservation laws. Building upon previous work developed by the authors, in the context of alternative numerical discretisations, this paper explores the use of a series of enhancements (both from the formulation and numerical standpoints) in order to explore some limiting scenarios, such as the consideration of near and true incompressibility. Both Total and Updated Lagrangian formulations are presented and compared at the discrete level, where very small differences between both descriptions are observed due to the excellent discrete satisfaction of the involutions. In addition, a matrix-free tailor-made artificial compressibility algorithm is discussed and combined with an angular momentum projection algorithm. A wide spectrum of numerical examples is thoroughly examined. The scheme shows excellent (stable, consistent and accurate) behaviour, in comparison with other methodologies, in compressible, nearly incompressible and truly incompressible bending dominated scenarios, yielding equal second order of convergence for velocities, deviatoric and volumetric components of the stress.

MSC:

74Sxx Numerical and other methods in solid mechanics
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
74Bxx Elastic materials

References:

[1] Pires, F. M.A.; de Souza Neto, E. A.; de la Cuesta Padilla, J. L., An assessment of the average nodal volume formulation for the analysis of nearly incompressible solids under finite strains. Commun. Numer. Methods Eng., 569-583 (2004) · Zbl 1302.74173
[2] Bonet, J.; Marriott, H.; Hassan, O., An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun. Numer. Methods Eng., 551-561 (2001) · Zbl 1154.74307
[3] Onishi, Y.; Amaya, K., A locking-free selective smoothed finite element method using tetrahedral and triangular elements with adaptive mesh rezoning for large deformation problems. Int. J. Numer. Methods Eng., 354-371 (2014) · Zbl 1352.74420
[4] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn., 283-292 (1977)
[5] Wood, W. L.; Bossak, M.; Zienkiewicz, O. C., An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng., 1562-1566 (1980) · Zbl 0441.73106
[6] Belytschko, T.; Ong, J. S.; Liu, W. K.; Kennedy, J. M., Hourglass control in linear and nonlinear problems. Comput. Methods Appl. Mech. Eng., 251-276 (1984) · Zbl 0522.73063
[7] Flanagan, D. P.; Belytschko, T., A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng., 679-706 (1981) · Zbl 0478.73049
[8] Hughes, T. J.R., Generalization of selective integration procedures to anisotropic and nonlinear media. Int. J. Numer. Methods Eng., 1413-1418 (1980) · Zbl 0437.73053
[9] Gil, A. J.; Ledger, P. D., A coupled hp-finite element scheme for the solution of two-dimensional electrostrictive materials. Int. J. Numer. Methods Eng., 1158-1183 (2012)
[10] Zeng, X.; Scovazzi, G.; Abboud, N.; Colomes, O.; Rossi, S., A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements. Int. J. Numer. Methods Eng., 1951-2003 (2017) · Zbl 07867199
[11] Bonet, J.; Burton, A. J., A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Commun. Numer. Methods Eng., 437-449 (1998) · Zbl 0906.73060
[12] Lahiri, S. K.; Bonet, J.; Peraire, J., A variationally consistent mesh adaptation method for triangular elements in explicit Lagrangian dynamics. Int. J. Numer. Methods Eng., 1073-1113 (2010) · Zbl 1188.74062
[13] Gee, M. W.; Dohrmann, C. R.; Key, S. W.; Wall, W. A., A uniform nodal strain tetrahedron with isochoric stabilization. Int. J. Numer. Methods Eng., 429-443 (2009) · Zbl 1183.74275
[14] Puso, M. A.; Solberg, J., A stabilized nodally integrated tetrahedral. Int. J. Numer. Methods Eng., 841-867 (2006) · Zbl 1113.74075
[15] Dohrmann, C.; Heinstein, M. W.; Jung, J.; Key, S. W.; Witkowski, W. R., Node-based uniform strain elements for three-node triangular and four-node tetrahedral meshes. Int. J. Numer. Methods Eng., 1549-1568 (2000) · Zbl 0989.74067
[16] Bonet, J.; Marriott, H.; Hassan, O., Stability and comparison of different linear tetrahedral formulations for nearly incompressible explicit dynamic applications. Int. J. Numer. Methods Eng., 119-133 (2001) · Zbl 1082.74547
[17] Bonet, J.; Marriott, H.; Hassan, O., An averaged nodal deformation gradient linear tetrahedral element for large strain explicit dynamic applications. Commun. Numer. Methods Eng., 551-561 (2001) · Zbl 1154.74307
[18] de Souza Neto, E.; Perić, D.; Dutko, M.; Owen, D., Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int. J. Solids Struct., 3277-3296 (1996) · Zbl 0929.74102
[19] Onishi, Y., F-bar aided edge-based smoothed finite element method with 4-node tetrahedral elements for static large deformation elastoplastic problems. Int. J. Comput. Methods (2017)
[20] Slone, A. K.; Bailey, C.; Cross, M., Dynamic solid mechanics using finite volume methods. Appl. Math. Model., 69-87 (2003) · Zbl 1135.74319
[21] Taylor, G. A.; Bailey, C.; Cross, M., A vertex-based finite volume method applied to non-linear material problems in computational solid mechanics. Int. J. Numer. Methods Eng., 507-529 (2003) · Zbl 1078.74670
[22] Jasak, H.; Weller, H. G., Application of the finite volume method and unstructured meshes to linear elasticity. Int. J. Numer. Methods Eng., 267-287 (2000) · Zbl 0990.74077
[23] Bijelonja, I.; Demirdžić, I.; Muzaferija, S., A finite volume method for incompressible linear elasticity. Comput. Methods Appl. Mech. Eng., 6378-6390 (2006) · Zbl 1124.74050
[24] Cardiff, P.; Karač, A.; Ivanković, A., Development of a finite volume contact solver based on the penalty method. Comput. Mater. Sci., 283-284 (2012)
[25] Cardiff, P.; Karač, A.; Ivanković, A., A large strain finite volume method for orthotropic bodies with general material orientations. Comput. Methods Appl. Mech. Eng., 318-335 (2014) · Zbl 1295.74005
[26] Cardiff, P.; Tuković, Ž.; Jaeger, P. D.; Clancy, M.; Ivanković, A., A Lagrangian cell-centred finite volume method for metal forming simulation. Int. J. Numer. Methods Eng., 1777-1803 (2017) · Zbl 1365.65202
[27] Trangenstein, J. A.; Colella, P., A higher-order Godunov method for modeling finite deformation in elastic-plastic solids. Commun. Pure Appl. Math., 41-100 (1991) · Zbl 0714.73027
[28] Trangenstein, J. A., A second-order Godunov algorithm for two-dimensional solid mechanics. Comput. Mech., 343-359 (1994) · Zbl 0793.73102
[29] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and Lagrangian systems. Arch. Ration. Mech. Anal., 327-372 (2005) · Zbl 1096.76046
[30] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems. SIAM J. Sci. Comput., 1781-1824 (2007) · Zbl 1251.76028
[31] Maire, P. H., A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry. J. Comput. Phys., 6882-6915 (2009) · Zbl 1261.76021
[32] Maire, P.-H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics. J. Comput. Phys., 799-821 (2009) · Zbl 1156.76039
[33] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension. J. Comput. Phys., 5160-5183 (2009) · Zbl 1168.76029
[34] Burton, D. E.; Carney, T. C.; Morgan, N. R.; Sambasivan, S. K.; Shashkov, M. J., A cell-centered Lagrangian Godunov-like method for solid dynamics. Comput. Fluids, 33-47 (2013) · Zbl 1290.76095
[35] Maire, P.-H.; Abgrall, R.; Breil, J.; Loubere, R.; Rebourcet, B., A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two dimensional unstructured grids. J. Comput. Phys., 626-665 (2013) · Zbl 1291.74186
[36] Dobrev, V. A.; Kolev, T. V.; Rieben, R. N., High order curvilinear finite elements for elastic-plastic Lagrangian dynamics. J. Comput. Phys., 1062-1080 (2014) · Zbl 1351.76057
[37] Kluth, G.; Després, B., Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme. J. Comput. Phys., 9092-9118 (2010) · Zbl 1427.74029
[38] Georges, G.; Breil, J.; Maire, P. H., A 3D finite volume scheme for solving the updated Lagrangian form of hyperelasticity. Int. J. Numer. Methods Fluids, 41-54 (2017)
[39] Scovazzi, G.; Carnes, B.; Zeng, X.; Rossi, S., A simple, stable, and accurate linear tetrahedral finite element for transient, nearly, and fully incompressible solid dynamics: a dynamic variational multiscale approach. Int. J. Numer. Methods Eng., 799-839 (2015) · Zbl 1352.74434
[40] Scovazzi, G.; Song, T.; Zeng, X., A velocity/stress mixed stabilized nodal finite element for elastodynamics: analysis and computations with strongly and weakly enforced boundary conditions. Comput. Methods Appl. Mech. Eng., 532-576 (2017) · Zbl 1439.74148
[41] Abboud, N.; Scovazzi, G., Elastoplasticity with linear tetrahedral elements: a variational multiscale method. Int. J. Numer. Methods Eng., 913-955 (2018) · Zbl 07865132
[42] Rossi, S.; Abboud, N.; Scovazzi, G., Implicit finite incompressible elastodynamics with linear finite elements: a stabilized method in rate form. Comput. Methods Appl. Mech. Eng., 208-249 (2016) · Zbl 1439.74464
[43] Lee, C. H.; Gil, A. J.; Bonet, J., Development of a cell centred upwind finite volume algorithm for a new conservation law formulation in structural dynamics. Comput. Struct., 13-38 (2013)
[44] Haider, J.; Lee, C. H.; Gil, A. J.; Bonet, J., A first-order hyperbolic framework for large strain computational solid dynamics: an upwind cell centred Total Lagrangian scheme. Int. J. Numer. Methods Eng., 407-456 (2017) · Zbl 07874362
[45] Aguirre, M.; Gil, A. J.; Bonet, J.; Arranz-Carreño, A., A vertex centred finite volume Jameson-Schmidt-Turkel (JST) algorithm for a mixed conservation formulation in solid dynamics. J. Comput. Phys., 672-699 (2014) · Zbl 1349.74341
[46] Aguirre, M.; Gil, A. J.; Bonet, J.; Lee, C. H., An upwind vertex centred finite volume solver for Lagrangian solid dynamics. J. Comput. Phys., 387-422 (2015) · Zbl 1349.74342
[47] Karim, I. A., A Two-step Taylor-Galerkin Formulation For Explicit Solid Dynamics Large Strain Problems (2011), Civil Engineering Dept. Swansea University, PhD thesis
[48] Lee, C. H.; Gil, A. J.; Bonet, J., Development of a stabilised Petrov-Galerkin formulation for conservation laws in Lagrangian fast solid dynamics. Comput. Methods Appl. Mech. Eng., 40-64 (2014) · Zbl 1295.74099
[49] Gil, A. J.; Lee, C. H.; Bonet, J.; Aguirre, M., A stabilised Petrov-Galerkin formulation for linear tetrahedral elements in compressible, nearly incompressible and truly incompressible fast dynamics. Comput. Methods Appl. Mech. Eng., 659-690 (2014) · Zbl 1423.74883
[50] Gil, A. J.; Lee, C. H.; Bonet, J.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Comput. Methods Appl. Mech. Eng., 146-181 (2016) · Zbl 1425.74016
[51] Bonet, J.; Gil, A. J.; Lee, C. H.; Aguirre, M.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity. Comput. Methods Appl. Mech. Eng., 689-732 (2015) · Zbl 1423.74010
[52] Lee, C. H.; Gil, A. J.; Greto, G.; Kulasegaram, S.; Bonet, J., A new Jameson-Schmidt-Turkel Smooth Particle Hydrodynamics algorithm for large strain explicit fast dynamics. Comput. Methods Appl. Mech. Eng., 71-111 (2016) · Zbl 1439.74494
[53] Lee, C. H.; Gil, A. J.; Hassan, O. I.; Bonet, J.; Kulasegaram, S., A variationally consistent Streamline Upwind Petrov Galerkin Smooth Particle Hydrodynamics algorithm for large strain solid dynamics. Comput. Methods Appl. Mech. Eng., 514-536 (2017) · Zbl 1439.74438
[54] Lee, C. H.; Gil, A. J.; Ghavamian, A.; Bonet, J., A Total Lagrangian upwind Smooth Particle Hydrodynamics algorithm for large strain explicit solid dynamics. Comput. Methods Appl. Mech. Eng., 209-250 (2019) · Zbl 1440.74467
[55] Gil, A. J.; Lee, C. H.; Bonet, J.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part II: Total Lagrangian compressible, nearly incompressible and truly incompressible elasticity. Comput. Methods Appl. Mech. Eng., 146-181 (2016) · Zbl 1425.74016
[56] Bonet, J.; Gil, A. J.; Lee, C. H.; Aguirre, M.; Ortigosa, R., A first order hyperbolic framework for large strain computational solid dynamics. Part I: Total Lagrangian isothermal elasticity. Comput. Methods Appl. Mech. Eng., 689-732 (2015) · Zbl 1423.74010
[57] Karim, I. A.; Lee, C. H.; Gil, A. J.; Bonet, J., A two-step Taylor-Galerkin formulation for fast dynamics. Eng. Comput., 366-387 (2014)
[58] Nguyen, N. C.; Peraire, J., Hybridizable Discontinuous Galerkin methods for partial differential equations in continuum mechanics. J. Comput. Phys., 5955-5988 (2012) · Zbl 1277.65082
[59] Bonet, J.; Gil, A. J.; Ortigosa, R., On a tensor cross product based formulation of large strain solid mechanics. Int. J. Solids Struct., 49-63 (2016)
[60] Bonet, J.; Gil, A. J.; Ortigosa, R., A computational framework for polyconvex large strain elasticity. Comput. Methods Appl. Mech. Eng., 1061-1094 (2015) · Zbl 1423.74122
[61] Vilar, F.; Maire, P.-H.; Abgrall, R., A discontinuous Galerkin discretization for solving the two-dimensional gas dynamics equations written under total Lagrangian formulation on general unstructured grids. J. Comput. Phys., 188-234 (2014) · Zbl 1349.76278
[62] Torrilhon, M.; Fey, M., Constraint-preserving upwind methods for multidimensional advection equations. SIAM J. Numer. Anal., 1694-1728 (2004) · Zbl 1146.76621
[63] Bonet, J.; Wood, R. D., Nonlinear Continuum Mechanics for Finite Element Analysis (2008), Cambridge University Press · Zbl 1142.74002
[64] Luo, H.; Baum, J.; Lohner, R., An Improved Finite Volume Scheme for Compressible Flows on Unstructured Grids (2012), AIAA Paper 95-0348, Reston, Virginia
[65] Haider, J.; Lee, C. H.; Gil, A. J.; Huerta, A.; Bonet, J., An upwind cell centred Total Lagrangian finite volume algorithm for nearly incompressible explicit fast solid dynamic applications. Comput. Methods Appl. Mech. Eng., 684-727 (2018) · Zbl 1440.74458
[66] Engquist, B.; Osher, S., One-sided difference approximations for nonlinear conservation laws. Math. Comput., 321-351 (1981) · Zbl 0469.65067
[67] Courant, R.; Friedrichs, K.; Lewy, H., On the partial difference equations of mathematical physics. Math. Ann., 32-74 (1928) · JFM 54.0486.01
[68] Chorin, A. J., A numerical method for solving incompressible viscous flow problems. J. Comput. Phys., 12-26 (1967) · Zbl 0149.44802
[69] Sambasivan, S. K.; Shashkov, M. J.; Burton, D. E., A finite volume cell-centered Lagrangian hydrodynamics approach for solids in general unstructured grids. Int. J. Numer. Methods Fluids, 770-810 (2013) · Zbl 1455.74019
[70] Simo, J. C.; Tarnow, N., The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics. Z. Angew. Math. Phys., 757-792 (1992) · Zbl 0758.73001
[71] Wilkins, M. L.; Guinan, M. W., Impact of cylinders on a rigid boundary. J. Appl. Phys., 1200-1206 (1973)
[72] Boatti, E.; Scalet, G.; Auricchio, F., A three-dimensional finite-strain phenomenological model for shape-memory polymers: formulation, numerical simulations, and comparison with experimental data. Int. J. Plast., 153-177 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.