×

A cell-centered Lagrangian Godunov-like method for solid dynamics. (English) Zbl 1290.76095

Summary: We present a spatially and temporally second-order cell-centered Lagrangian formulation (CCH) suitable for elasto-plastic materials on unstructured polyhedral cells in multiple dimensions. In the development of our scheme, we follow a mimetic approach, based upon the finite volume method, as a guide to the derivation of the difference equations. In doing so, we consider not only the governing equations, but a number of ancillary relationships. The finite volume equations for solids are cast in Lagrangian form with particular attention to the discrete form of the Second Law of Thermodynamics. We expand upon previous work and propose a new entropy production expression. A new tensor dissipation model is presented that guarantees the viscous stress tensor is symmetric. The new tensor dissipation model shows increased mesh robustness. In the second-order formulation, a limiter for the stress gradient is presented, as well as a vorticity limiter for the velocity gradient. Numerical results are demonstrated for common test problems involving both gas and solid constitutive models.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs

Software:

CAVEAT
Full Text: DOI

References:

[2] Barlow, A. J.; Roe, P. L., A cell centered Lagrangian Godunov scheme for shock hydrodynamics, Comput Fluids, 46, 1, 133-136 (2011) · Zbl 1431.76006
[6] Burton, D. E., Free-Lagrange advection slide lines, (Advances in the free Lagrange method (1990), Springer: Springer NY), Lawrence Livermore National Laboratory Report UCRL-JC-104257; June 1990
[11] Campbell, J. C.; Shashkov, M. J., A tensor artificial viscosity using a mimetic finite difference algorithm, J Comput Phys, 172, 739-765 (2001) · Zbl 1002.76082
[12] Caramana, E. J.; Shashkov, M. J.; Whalen, P. P., Formulations of artificial viscosity for multidimensional shock wave computations, J Comput Phys, 144, 70-97 (1998) · Zbl 1392.76041
[13] Caramana, E. J.; Loubére, R., Curl-q: a vorticity damping artificial viscosity for lagrangian hydrodynamics calculations, J Comput Phys, 215, 385-391 (2006) · Zbl 1173.76380
[14] Carré, G.; Del Pino, S.; Després, B.; Labourasse, E., A cell-centered Lagrangian hydrodynamics scheme on general unstructured meshes in arbitrary dimension, J Comput Phys, 228, 5160-5183 (2009) · Zbl 1168.76029
[15] Cheng, J.; Shu, C-W., A high order ENO conservative Lagrangian type scheme for the compressible Euler equations, J Comput Phys, 227, 1567-1596 (2007) · Zbl 1126.76035
[16] Davis, W. C., Shock waves; rarefaction waves; equations of state, (Zukas, J. A.; Walters, W. P., Explosive effects and applications (1998), Springer)
[17] Després, B.; Mazeran, C., Lagrangian gas dynamics in two dimensions and lagrangian systems, Arch Ration Mech Anal, 178, 327-371 (2005) · Zbl 1096.76046
[18] Després, B., Weak consistency of the cell-centered Lagrangian GLACE scheme on general meshes in any dimension, Comput Methods Appl Mech Eng, 199, 2669-2679 (2010) · Zbl 1231.76177
[19] Dukowicz, J. K., A general, non-iterative Riemann solver for Godunovs method, J Comput Phys, 61, 119-137 (1984) · Zbl 0629.76074
[20] Dukowicz, J. K.; Cline, M. C.; Addessio, F. S., A general topology method, J Comput Phys, 82, 29-63 (1989) · Zbl 0665.76032
[21] Dukowicz, J. K.; Meltz, B., Vorticity errors in multidimensional Lagrangian codes, J Comput Phys, 99, 115 (1992) · Zbl 0743.76058
[22] Galera, S.; Maire, P.-H.; Breil, J., A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction, J Comput Phys, 229, 5755-5787 (2010) · Zbl 1346.76105
[23] Galera, S.; Breil, J.; Maire, P.-H., A 2D unstructured multi-material cell-centered arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction, Comput Fluids, 46, 237-244 (2010) · Zbl 1432.76215
[25] Godunov, S. K., J Comput Phys, 153, 625 (1999)
[26] Green, A. E.; Naghdi, P. M., A general theory of an elastic-plastic continuum, Arch Ration Mech Anal, 18, 251-281 (1965) · Zbl 0133.17701
[27] Hill, R., The mathematical theory of plasticity (1950), Clarendon Press: Clarendon Press Oxford · Zbl 0041.10802
[28] Howell, B. P.; Ball, G. J., A free-Lagrange Augmented Godunov method for the simulation of elastic-plastic solids, J Comput Phys, 175, 128-167 (2002) · Zbl 1043.74048
[29] Hugoniot, H., J Ecole Polytech, 58, 106 (1889)
[30] Hyman, J. M.; Scovel, J. C., Deriving mimetic difference approximations to differential operators using algebraic topology, Math Comput, 52, 471-494 (1989)
[31] Hyman, J. M.; Shashkov, M., Natural discretizations for the divergence, gradient, and curl on logically rectangular grids, Comput Math Appl, 33, 81 (1997) · Zbl 0868.65006
[32] Jaumann, G., Geschlossenes system physikalischer und chemischer differentialgesetze, Akad Wiss Wien Sitzber IIa, 120, 385-530 (1911) · JFM 42.0854.05
[33] Kluth, G.; Després, B., Discretization of hyperelasticity on unstructured mesh with a cell-centered Lagrangian scheme, J Comput Phys, 229, 9092-9118 (2010) · Zbl 1427.74029
[34] Kuropatenko, V. F., On difference methods for the equations of hydrodynamics, (N.N. Jenenko. N.N. Jenenko, Difference methods for solutions of problems of mathematical physics, vol. 1 (1967), American Mathematical Society), 116
[35] Loubére, R.; Shashkov, M.; Wendroff, B., Volume consistency in a staggered grid, J Comput Phys (2008) · Zbl 1147.76044
[36] Maire, P.-H.; Abgrall, R.; Breil, J.; Ovadia, J., A cell-centered Lagrangian scheme for two-dimensional compressible flow problems, SIAM J Sci Comput, 29, 1781-1824 (2007) · Zbl 1251.76028
[37] Maire, P.-H.; Breil, J.; Galera, S., A cell-centered arbitrary Lagrangian (ALE) method, Int J Numer Methods Fluids, 56, 1161-1166 (2008) · Zbl 1384.76044
[38] Maire, P.-H.; Breil, J., A second-order cell-centered Lagrangian scheme for two-dimensional compressible flow problems, Int J Numer Methods Fluids, 56, 1417-1423 (2008) · Zbl 1151.76021
[39] Maire, P.-H., A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured mesh, J Comput Phys, 228, 7, 6882-6915 (2009) · Zbl 1261.76021
[40] Maire, P.-H.; Nkonga, B., Multi-scale Godunov-type method for cell-centered discrete Lagrangian hydrodynamics, J Comput Phys, 228, 799-821 (2009) · Zbl 1156.76039
[41] Maire, P.-H., A unified sub-cell force-based discretization for cell-centered Lagrangian hydrodynamics on polygonal grids, Int J Numer Method Fluids, 65, 1281-1294 (2011) · Zbl 1429.76089
[46] Noh, W. F., Errors for calculations of strong shocks using artificial viscosity and an artificial heat flux, J Comput Phys, 72, 78-120 (1987) · Zbl 0619.76091
[47] Owens, J. M., A tensor artificial viscosity for SPH, J Comput Phys, 201, 601-629 (2004) · Zbl 1061.76070
[49] Sambasivan, S. K.; Udaykumar, H. S., A sharp interface method for high-speed multi-material flows: strong shocks and arbitrary material pairs, Int J Comput Fluid Dyn, 25, 3, 139-162 (2011) · Zbl 1271.76255
[50] Taylor, G. I., The use of flat-ended projectiles for determining dynamic yield stress, theoretical considerations, Proc R Soc London, Series A, 194, 1038, 289-299 (1948)
[51] Thomas, P. D.; Lombard, C. K., Geometric conservation law and its application to flow computations on moving grids, AIAA J, 17, 1030 (1979) · Zbl 0436.76025
[53] van Leer, B., Towards the ultimate conservative difference scheme, a second-order sequel to Godunovs method, J Comput Phys, 135, 29-248 (1997) · Zbl 0939.76063
[54] Venkatakrishnan, V., Convergence to steady state solutions of Euler equations on unstructured grids with limiters, Comput Phys, 118, 1, 120-130 (1995) · Zbl 0858.76058
[57] Whalen, P. P., Algebraic limitations on two-dimensional hydrodynamics simulations, J Comput Phys, 124, 46-54 (1996) · Zbl 0849.76079
[58] Wilkins, M. L., Calculation of elastic-plastic flow, (Methods Comput Phys, vol. 3 (1964), Academic Press: Academic Press New York)
[59] Wilkins, M. L., The use of artificial viscosity in multidimensional fluid dynamic calculations, J Comput Phys, 36, 281 (1980) · Zbl 0436.76040
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.