×

Electrostatic partners and zeros of orthogonal and multiple orthogonal polynomials. (English) Zbl 1532.33019

Authors’ abstract: For a given polynomial \(P\) with simple zeros, and a given semiclassical weight \(w\), we present a construction that yields a linear second-order differential equation (ODE), and in consequence, an electrostatic model for zeros of \(P\). The coefficients of this ODE are written in terms of a dual polynomial that we call the electrostatic partner of \(P\). This construction is absolutely general and can be carried out for any polynomial with simple zeros and any semiclassical weight on the complex plane. An additional assumption of quasi-orthogonality of \(P\) with respect to \(w\) allows us to give more precise bounds on the degree of the electrostatic partner. In the case of orthogonal and quasi-orthogonal polynomials, we recover some of the known results and generalize others. Additionally, for the Hermite-Padé or multiple orthogonal polynomials of type II, this approach yields a system of linear second-order differential equations, from which we derive an electrostatic interpretation of their zeros in terms of a vector equilibrium. More detailed results are obtained in the special cases of Angelesco, Nikishin, and generalized Nikishin systems. We also discuss the discrete-to-continuous transition of these models in the asymptotic regime, as the number of zeros tends to infinity, into the known vector equilibrium problems. Finally, we discuss how the system of obtained second-order ODEs yields a third-order differential equation for these polynomials, well described in the literature. We finish the paper by presenting several illustrative examples.

MSC:

33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
33C47 Other special orthogonal polynomials and functions
42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
30C15 Zeros of polynomials, rational functions, and other analytic functions of one complex variable (e.g., zeros of functions with bounded Dirichlet integral)
31A15 Potentials and capacity, harmonic measure, extremal length and related notions in two dimensions

Software:

DLMF

References:

[1] Adler, M.; Moser, J., On a class of polynomials connected with the Korteweg-de Vries equation, Commun. Math. Phys., 61, 1, 1-30 (1978) · Zbl 0428.35067
[2] Angelesco, MA, Sur deux extensions des fractions continues algébriques, C. R. Acad. Sci. Paris, 18, 262-263 (1919) · JFM 47.0431.02
[3] Appell, P., Sur une suite des polynômes ayant toutes leurs racines réelles, Arch. Math. Phys., 1, 3, 69-71 (1901) · JFM 32.0105.04
[4] Aptekarev, AI, Strong asymptotics of polynomials of simultaneous orthogonality for Nikishin systems, Mat. Sb., 190, 5, 3-44 (1999) · Zbl 0957.42015
[5] Aptekarev, A.I.: Asymptotics of Hermite-Padé approximants for a pair of functions with branch points. Dokl. Akad. Nauk 422(4), 443-445 (2008). English transl. in Dokl. Math. 78:2, 717-719 (2008) · Zbl 1181.30022
[6] Aptekarev, AI; Bleher, PM; Kuijlaars, ABJ, Large \(n\) limit of Gaussian random matrices with external source. II, Commun. Math. Phys., 259, 2, 367-389 (2005) · Zbl 1129.82014
[7] Aptekarev, AI; Branquinho, A.; Van Assche, W., Multiple orthogonal polynomials for classical weights, Trans. AMS, 355, 3887-3914 (2003) · Zbl 1033.33002
[8] Aptekarev, A.I., Kalyagin, V.A.: Analytic properties of functions representable by \(P^{(m)}\)-fractions with periodic coefficients. Akad. Nauk SSSR Inst. Prikl. Mat. (57), 12 (1986) (Preprint)
[9] Aptekarev, A.I., Kuijlaars, A.B.J.: Hermite-Padé approximations and multiple orthogonal polynomial ensembles. Russ. Math. Surv. 66(6), 1133-1199 (2011). Translation from Usp. Mat. Nauk 66, No. 6, 123-190 (2011) · Zbl 1243.41004
[10] Aptekarev, A.I., Lysov, V.G.: Systems of Markov functions generated by graphs and the asymptotics of their Hermite-Padé approximants. Mat. Sb. 201(2), 29-78 (2010). English trans. in Sb. Math. 201:2 (2010), 183-234 · Zbl 1188.42009
[11] Aptekarev, AI; Lysov, VG; Tulyakov, DN, Random matrices with an external source and the asymptotics of multiple orthogonal polynomials, Mat. Sb., 202, 2, 3-56 (2011) · Zbl 1216.60008
[12] Aptekarev, AI; Marcellán, F.; Rocha, IA, Semiclassical multiple orthogonal polynomials and the properties of Jacobi-Bessel polynomials, J. Approx. Theory, 90, 117-146 (1997) · Zbl 0878.33004
[13] Aptekarev, AI; Stahl, H.; Gonchar, AA; Saff, EB, Asymptotics of Hermite-Padé polynomials, Progress in Approximation Theory (Tampa, FL, 1990). Springer Series in Computational Mathematics, 127-167 (1992), New York: Springer, New York · Zbl 0806.41001
[14] Aptekarev, AI; Van Assche, W.; Yattselev, ML, Hermite-Padé approximants for a pair of Cauchy transforms with overlapping symmetric supports, Commun. Pure Appl. Math., 70, 3, 444-510 (2017) · Zbl 1362.41001
[15] Aref, H., Vortices and polynomials, Fluid Dyn. Res., 39, 1-3, 5-23 (2007) · Zbl 1136.76012
[16] Barry, AM; Hajir, F.; Kevrekidis, PG, Generating functions, polynomials and vortices with alternating signs in Bose-Einstein condensates, J. Phys. A, 48, 15, 155205 (2015) · Zbl 1326.81233
[17] Bartman, A.B.: A new interpretation of the Adler-Moser KdV polynomials: interaction of vortices. In: Nonlinear and Turbulent Processes in Physics, vol. 3 (Kiev, 1983), pp. 1175-1181. Harwood Academic Publication, Chur (1984)
[18] Bertola, M., Chavez-Heredia, E., Grava, T.: The Stieltjes-Fekete problem and degenerate orthogonal polynomials. Preprint arXiv:2206.06861 (2022)
[19] Bleher, P.; Delvaux, S.; Kuijlaars, ABJ, Random matrix model with external source and a constrained vector equilibrium problem, Commun. Pure Appl. Math., 64, 1, 116-160 (2011) · Zbl 1206.60007
[20] Bleher, P.; Kuijlaars, ABJ, Large \(n\) limit of Gaussian random matrices with external source. I, Commun. Math. Phys., 252, 1-3, 43-76 (2004) · Zbl 1124.82309
[21] Bleher, PM; Kuijlaars, ABJ, Integral representations for multiple Hermite and multiple Laguerre polynomials, Ann. Inst. Fourier (Grenoble), 55, 6, 2001-2014 (2005) · Zbl 1084.33008
[22] Bleher, PM; Kuijlaars, ABJ, Large \(n\) limit of Gaussian random matrices with external source III. Double scaling limit, Commun. Math. Phys., 270, 2, 481-517 (2007) · Zbl 1126.82010
[23] Bôcher, M., The roots of polynomials that satisfy certain differential equations of the second order, Bull. Am. Math. Soc., 4, 256-258 (1897) · JFM 29.0074.03
[24] Brown, JW, On Angelesco-type polynomials, Ricerca (Napoli) (3), 24, maggio-agosto, 3-7 (1973) · Zbl 0291.33009
[25] Burchnall, JL; Chaundy, TW, A set of differential equations which can be solved by polynomials, Proc. Lond. Math. Soc. (2), 30, 6, 401-414 (1930) · JFM 56.0384.03
[26] Bustamante, J.; López Lagomasino, G., Hermite-Padé approximation for Nikishin systems of analytic functions, Russ. Acad. Sci. Sb. Math., 77, 367-384 (1994) · Zbl 0809.30031
[27] Castillo, K.; de Jesus, MN; Petronilho, J., An electrostatic interpretation of the zeros of sieved ultraspherical polynomials, J. Math. Phys., 61, 5, 053501 (2020) · Zbl 1443.33030
[28] Chihara, TS, On quasi-orthogonal polynomials, Proc. Am. Math. Soc., 8, 765-767 (1957) · Zbl 0078.25604
[29] Chihara, TS, An Introduction to Orthogonal Polynomials (1978), New York: Gordon and Breach, New York · Zbl 0389.33008
[30] Clarkson, PA, Vortices and polynomials, Stud. Appl. Math., 123, 1, 37-62 (2009) · Zbl 1372.37110
[31] Coussement, E.; Coussement, J.; Van Assche, W., Asymptotic zero distribution for a class of multiple orthogonal polynomials, Trans. Am. Math. Soc., 360, 10, 5571-5588 (2008) · Zbl 1165.33007
[32] Coussement, J.; Van Assche, W., Differential equations for multiple orthogonal polynomials with respect to classical weights: raising and lowering operators, J. Phys. A, 39, 13, 3311-3318 (2006) · Zbl 1097.33004
[33] Deift, PA, Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach (1999), New York: New York University Courant Institute of Mathematical Sciences, New York · Zbl 0997.47033
[34] Demina, MV; Kudryashov, NA, Special polynomials and rational solutions of the hierarchy of the second Painlevé equation, Teoret. Mat. Fiz., 153, 1, 58-67 (2007) · Zbl 1138.35388
[35] Demina, MV; Kudryashov, NA, Point vortices and classical orthogonal polynomials, Regul. Chaotic Dyn., 17, 5, 371-384 (2012) · Zbl 1257.33048
[36] Demina, MV; Kudryashov, NA, Vortices and polynomials: non-uniqueness of the Adler-Moser polynomials for the Tkachenko equation, J. Phys. A, 45, 19, 195205 (2012) · Zbl 1245.35016
[37] Demina, MV; Kudryashov, NA, Multi-particle dynamical systems and polynomials, Regul. Chaotic Dyn., 21, 3, 351-366 (2016) · Zbl 1377.35006
[38] Dëmina, MV; Kudryashov, NA; Sinel’ shchikov, DI, The polygonal method for constructing exact solutions of some nonlinear differential equations to describe waves on water, Zh. Vychisl. Mat. Mat. Fiz., 48, 12, 2151-2162 (2008) · Zbl 07814503
[39] Dimitrov, DK; Shapiro, B., Electrostatic problems with a rational constraint and degenerate Lamé equations, Potential Anal., 52, 4, 645-659 (2020) · Zbl 1469.31024
[40] Dimitrov, D.K., Van Assche, W.: Lamé differential equations and electrostatics. Proc. Am. Math. Soc. 128(12), 3621-3628 (2000). Erratum in Proc. Amer. Math. Soc. 131 (2003), no. 7, 2303 · Zbl 0952.34023
[41] Driver, K.; Stahl, H., Normality in Nikishin systems, Indag. Math., 5, 161-187 (1994) · Zbl 0817.41022
[42] Fidalgo Prieto, U.; López Lagomasino, G., Nikishin systems are perfect, Constr. Approx., 34, 297-356 (2011) · Zbl 1258.30015
[43] Filipuk, G.; Van Assche, W.; Zhang, L., Ladder operators and differential equations for multiple orthogonal polynomials, J. Phys. A, 46, 20, 205204 (2013) · Zbl 1271.33004
[44] Forrester, PJ; Rogers, JB, Electrostatics and the zeros of the classical polynomials, SIAM J. Math. Anal., 17, 2, 461-468 (1986) · Zbl 0613.33009
[45] Gakhov, F.D.: Boundary Value Problems. Dover Publications Inc., New York (1990). Translated from the Russian, Reprint of the 1966 translation · Zbl 0830.30026
[46] Gonchar, AA; Rakhmanov, EA; Sorokin, VN, Hermite-Padé approximants for systems of Markov-type functions, Sb. Math., 188, 671-696 (1997) · Zbl 0889.41011
[47] Grünbaum, FA, Variations on a theme Heine and Stieltjes: an electrostatic interpretation of the zeros of certain polynomials, J. Comput. Appl. Math., 99, 189-194 (1998) · Zbl 0934.33012
[48] Heine, E., Handbuch der Kugelfunctionen (1878), Berlin: G. Reimer, Berlin · JFM 10.0332.01
[49] Ismail, MEH, An electrostatic model for zeros of general orthogonal polynomials, Pac. J. Math., 193, 355-369 (2000) · Zbl 1011.33011
[50] Ismail, M.E.H.: More on electrostatic models for zeros of orthogonal polynomials. In: Proceedings of the International Conference on Fourier Analysis and Applications (Kuwait, 1998), vol. 21, pp. 191-204 (2000) · Zbl 0981.42015
[51] Ismail, M.E.H.: Functional equations and electrostatic models for orthogonal polynomials. In: Random Matrix Models and Their Applications. Mathematical Sciences Research Institute Publications, vol. 40, pp. 225-244. Cambridge University Press, Cambridge (2001) · Zbl 1008.42021
[52] Ismail, M.E.H.: Classical and Quantum Orthogonal Polynomials in One Variable. Encyclopedia of Mathematics and its Applications, vol. 98. Cambridge University Press, Cambridge (2005). With two chapters by Walter Van Assche, With a foreword by Richard A. Askey · Zbl 1082.42016
[53] Ismail, MEH; Wang, X-S, On quasi-orthogonal polynomials: their differential equations, discriminants and electrostatics, J. Math. Anal. Appl., 474, 2, 1178-1197 (2019) · Zbl 1479.33008
[54] Kaliaguine, VA, On a class of polynomials defined by two orthogonality relations, Math. USSR Sb., 38, 4, 563-580 (1981) · Zbl 0462.41023
[55] Kaliaguine, VA, On operators associated with Angelesco systems, East J. Approx., 1, 2, 157-170 (1995) · Zbl 0851.41013
[56] Kaliaguine, VA; Ronveaux, A., On a system of “classical” polynomials of simultaneous orthogonality, J. Comput. Appl. Math., 67, 207-217 (1996) · Zbl 0857.42012
[57] Kudryashov, NA; Demina, MV, Relations between zeros of special polynomials associated with the Painlevé equations, Phys. Lett. A, 368, 3-4, 227-234 (2007) · Zbl 1209.33007
[58] Kuijlaars, ABJ; Martínez-Finkelshtein, A.; Orive, R., Orthogonality of Jacobi polynomials with general parameters, Electron. Trans. Numer. Anal., 19, 1-17 (2005) · Zbl 1075.33005
[59] Kuijlaars, ABJ; Martínez-Finkelshtein, A.; Wielonsky, F., Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights, Commun. Math. Phys., 286, 1, 217-275 (2009) · Zbl 1188.60018
[60] López-Lagomasino, G.; Marcellán, F.; Huertas, EJ, An introduction to multiple orthogonal polynomials and Hermite-Padé approximation, Orthogonal Polynomials: Current Trends and Applications. SEMA SIMAI Springer Series, 237-271 (2021), Cham: Springer, Cham · Zbl 1460.42041
[61] López Lagomasino, G.; Van Assche, W., The Riemann-Hilbert analysis for a Nikishin system, Sb.: Math., 209, 7, 1019-1050 (2018) · Zbl 1398.30024
[62] Loutsenko, I., Equilibrium of charges and differential equations solved by polynomials, J. Phys. A, 37, 4, 1309-1321 (2004) · Zbl 1108.34004
[63] Lysov, V.; Wielonsky, F., Strong asymptotics for multiple Laguerre polynomials, Constr. Approx., 28, 1, 61-111 (2008) · Zbl 1173.30023
[64] Lysov, VG, Mixed type Hermite-Padé approximants for a Nikishin system, Proc. Steklov Inst. Math., 311, 199-213 (2020) · Zbl 07308461
[65] Magnus, AP, Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials, J. Comput. Appl. Math., 57, 215-237 (1995) · Zbl 0828.42012
[66] Mahler, K., Perfect systems, Compos. Math., 19, 95-166 (1968) · Zbl 0168.31303
[67] Marcellán, F.; Martínez-Finkelshtein, A.; Martínez-González, P., Electrostatic models for zeros of polynomials: old, new, and some open problems, J. Comput. Appl. Math., 207, 2, 258-272 (2007) · Zbl 1131.30002
[68] Marcellán, F., Rocha, I.A.: On semiclassical linear functionals: integral representations. In: Proceedings of the Fourth International Symposium on Orthogonal Polynomials and their Applications (Evian-Les-Bains, 1992), vol. 57, pp. 239-249 (1995) · Zbl 0829.33006
[69] Marcellán, F.; Rocha, IA, Complex path integral representation for semiclassical linear functionals, J. Approx. Theory, 94, 1, 107-127 (1998) · Zbl 0920.42016
[70] Martínez-Finkelshtein, A., Rakhmanov, E.A.: On asymptotic behavior of Heine-Stieltjes and Van Vleck polynomials. In: Recent trends in Orthogonal Polynomials and Approximation Theory. Contemporary Mathematics, vol. 507, pp. 209-232. American Mathematical Society, Providence, RI (2010) · Zbl 1207.30058
[71] Martínez-Finkelshtein, A.; Rakhmanov, EA, Critical measures, quadratic differentials, and weak limits of zeros of Stieltjes polynomials, Commun. Math. Phys., 302, 1, 53-111 (2011) · Zbl 1226.30005
[72] Martínez-Finkelshtein, A.; Saff, EB, Asymptotic properties of Heine-Stieltjes and Van Vleck polynomials, J. Approx. Theory, 118, 1, 131-151 (2002) · Zbl 1099.33502
[73] Martínez-Finkelshtein, A.; Silva, GLF, Critical measures for vector energy: global structure of trajectories of quadratic differentials, Adv. Math., 302, 1137-1232 (2016) · Zbl 1354.31002
[74] Martínez-Finkelshtein, A.; Silva, GLF, Critical measures for vector energy: asymptotics of non-diagonal multiple orthogonal polynomials for a cubic weight, Adv. Math., 349, 246-315 (2019) · Zbl 1417.42027
[75] Martínez-Finkelshtein, A.; Silva, GLF, Spectral curves, variational problems and the Hermitian matrix model with external source, Commun. Math. Phys., 383, 2163-2242 (2021) · Zbl 07340022
[76] Mukhin, E.; Varchenko, A., Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe ansatz conjecture, Trans. Am. Math. Soc., 359, 11, 5383-5418 (2007) · Zbl 1127.82019
[77] Neuschel, T.; Van Assche, W., Asymptotic zero distribution of Jacobi-Piñeiro and multiple Laguerre polynomials, J. Approx. Theory, 205, 114-132 (2016) · Zbl 1342.33024
[78] Newton, PK, The \(N\)-Vortex Problem. Applied Mathematical Sciences (2001), New York: Springer-Verlag, New York · Zbl 0981.76002
[79] Nikishin, EM, On simultaneous Padé approximants, Math. USSR. Sb., 41, 409-425 (1982) · Zbl 0478.30007
[80] Nikishin, EM, Asymptotic behavior of linear forms for simultaneous Padé approximants, Izv. Vyssh. Uchebn. Zaved. Mat., 84, 33-41 (1986)
[81] Nikishin, EM; Sorokin, VN, Rational Approximations and Orthogonality (1991), Providence, RI: American Mathematical Society, Providence, RI · Zbl 0733.41001
[82] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.): NIST Handbook of Mathematical Functions. U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge University Press, Cambridge (2010). With 1 CD-ROM (Windows, Macintosh and UNIX) · Zbl 1198.00002
[83] Pineiro Diaz, L.R.: On simultaneous approximations for some collection of Markov functions. Mosc. Univ. Math. Bull. 42(2), 52-55 (1987). Translation from Vestn. Mosk. Univ., Ser. I 1987, No. 2, 67-70 (1987) · Zbl 0655.41024
[84] Rakhmanov, EA, On the asymptotics of Hermite-Padé polynomials for two Markov functions, Mat. Sb., 202, 1, 133-140 (2011) · Zbl 1218.41007
[85] Rakhmanov, EA; Suetin, SP, Asymptotic behavior of Hermite-Padé polynomials of the first kind for a pair of functions forming a Nikishin system, Uspekhi Mat. Nauk, 67, 5-407, 177-178 (2012) · Zbl 1273.41013
[86] Rakhmanov, EA; Suetin, SP, Distribution of zeros of Hermite-Padé polynomials for a pair of functions forming a Nikishin system, Mat. Sb., 204, 9, 115-160 (2013) · Zbl 1288.26010
[87] Ronveaux, A. (ed.): Heun’s Differential Equations. The Clarendon Press, Oxford University Press, New York (1995). With contributions by F. M. Arscott, S. Yu. Slavyanov, D. Schmidt, G. Wolf, P. Maroni and A. Duval · Zbl 0847.34006
[88] Rutka, P.; Smarzewski, R., Complete solution of the electrostatic equilibrium problem for classical weights, Appl. Math. Comput., 218, 10, 6027-6037 (2012) · Zbl 1243.78011
[89] Shapiro, B., Algebro-geometric aspects of Heine-Stieltjes theory, J. Lond. Math. Soc. (2), 83, 1, 36-56 (2011) · Zbl 1210.34127
[90] Shohat, JA, A differential equation for orthogonal polynomials, Duke Math. J., 5, 401-417 (1939) · JFM 65.0285.03
[91] Simanek, B., An electrostatic interpretation of the zeros of paraorthogonal polynomials on the unit circle, SIAM J. Math. Anal., 48, 3, 2250-2268 (2016) · Zbl 1341.42044
[92] Stahl, H.; Totik, V., General Orthogonal Polynomials. Encyclopedia of Mathematics and its Applications (1992), Cambridge: Cambridge University Press, Cambridge · Zbl 0791.33009
[93] Steinerberger, S., Electrostatic interpretation of zeros of orthogonal polynomials, Proc. Am. Math. Soc., 146, 12, 5323-5331 (2018) · Zbl 1464.34049
[94] Stieltjes, TJ, Sur certains polynômes que vérifient une équation différentielle linéaire du second ordre et sur la teorie des fonctions de Lamé, Acta Math., 6, 321-326 (1885) · JFM 17.0310.01
[95] Stieltjes, TJ, Sur les polynômes de Jacobi, C. R. Acad. Sci Paris, 100, 439-440 (1885) · JFM 17.0062.02
[96] Stieltjes, T.J.: Un théorème d’algèbre. Acta Math. 6(1), 319-320 (1885). Extrait d’une lettre adressée à M. Hermite · JFM 17.0106.02
[97] Szegő, G., Orthogonal Polynomials (1975), Providence: American Mathematical Society, Colloquium Publications, Providence · Zbl 0305.42011
[98] Valent, G., Van Assche, W.: The impact of Stieltjes’ work on continued fractions and orthogonal polynomials: additional material. In: Proceedings of the International Conference on Orthogonality, Moment Problems and Continued Fractions (Delft, 1994), vol. 65, pp. 419-447 (1995) · Zbl 0856.33002
[99] Van Assche, W., Padé and Hermite-Padé approximation and orthogonality, Surv. Approx. Theory, 2, 61-91 (2006) · Zbl 1102.41017
[100] Van Assche, W., Coussement, E.: Some classical multiple orthogonal polynomials, vol. 127, pp. 317-347 (2001). Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials · Zbl 0969.33005
[101] Van Assche, W.; Filipuk, G.; Zhang, L., Multiple orthogonal polynomials associated with an exponential cubic weight, J. Approx. Theory, 190, 1-25 (2015) · Zbl 1309.42037
[102] Van Assche, W.; Vuerinckx, A., Multiple Hermite polynomials and simultaneous Gaussian quadrature, Electron. Trans. Numer. Anal., 50, 182-198 (2018) · Zbl 1406.33009
[103] van Diejen, JF, Gradient system for the roots of the Askey-Wilson polynomial, Proc. Am. Math. Soc., 147, 12, 5239-5249 (2019) · Zbl 1429.33031
[104] van Diejen, J.F.: Stable equilibria for the roots of the symmetric continuous Hahn and Wilson polynomials. In: Orthogonal Polynomials: Current Trends and Applications. Proceedings of the 7th EIBPOA Conference, Universidad Carlos III de Madrid, Leganés, Spain, 3-6 July 2018, pp. 171-192. Springer, Cham (2021) · Zbl 1460.33020
[105] Van Vleck, EB, On the polynomials of Stieltjes, Bull. Am. Math. Soc., 4, 426-438 (1898) · JFM 29.0283.02
[106] von Helmholtz, H.: Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. J. Reine Angew. Math. 55, 25-55 (1858). English translation by Tait, P.G., 1867. On integrals of the hydrodynamical equations, which express vortex-motion. Philos. Mag. 33(4), 485-512 · ERAM 055.1448cj
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.