×

On the non-isothermal, non-Newtonian Hele-Shaw flows in a domain with rough boundary. (English) Zbl 1512.35252

Summary: In this paper, we investigate the roughness-induced effects on the nonlinear system describing the non-isothermal Hele-Shaw flow of a non-Newtonian fluid. Allowing different orders between the amplitude and the period of the boundary roughness, we rigorously determine the limit problems and also provide the corresponding rates of convergence in the critical case.

MSC:

35J57 Boundary value problems for second-order elliptic systems
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
Full Text: DOI

References:

[1] Arrieta, J. M.; Bruschi, S. M., Rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a Lispschitz deformation, Math. Models Methods Appl. Sci., 17, 1555-1585 (2007) · Zbl 1153.35038
[2] Arrieta, J. M.; Nakasato, J. C.; Pereira, M. C., The p-Laplacian operator in thin domains: the unfolding approach, J. Differ. Equ., 274, 1-34 (2021) · Zbl 1455.35008
[3] Barbosa, P. S.; Pereira, A. L.; Pereira, M. C., Continuity of attractors for a family of \(\mathcal{C}^1\) perturbations of the square, Ann. Mat., 196, 1365-1398 (2017) · Zbl 1391.35068
[4] Begehr, H.; Gilbert, R. P., Non-Newtonian Hele-Shaw flows in \(n \geq 2\) dimensions, Nonlinear Anal., Theory Methods Appl., 11, 17-47 (1987) · Zbl 0659.35040
[5] Borisov, D.; Cardone, G.; Faella, L.; Perugia, C., Uniform resolvent convergence for strip with fast oscillating boundary, J. Differ. Equ., 255, 4378-4402 (2013) · Zbl 1286.35025
[6] Chechkin, G.; Friedman, A.; Piatnistski, A., The boundary-value problem in domains with very rapidly oscillating boundary, J. Math. Anal. Appl., 231, 213-234 (1999) · Zbl 0938.35049
[7] Consiglieri, L., Radiative effects for some bidimensional thermoelectric problems, Adv. Nonlinear Anal., 5, 4, 347-366 (2016) · Zbl 1354.80003
[8] DiBenedetto, E.; Manfredi, J., On the higher integrability of the gradient of weak solutions of certain degenerate elliptic systems, Am. J. Math., 115, 5, 1107-1134 (1993) · Zbl 0805.35037
[9] Elliott, C. M.; Janvský, V., A variational inequality approach to Hele-Shaw flow with a moving boundary, Proc. R. Soc. Edinb., Math., 88, 93-107 (1981) · Zbl 0455.76043
[10] Fabricius, J.; Manjate, S.; Wall, P., On pressure-driven Hele-Shaw flow of power-law fluids, Appl. Anal., 101, 14, 5107-5137 (2022) · Zbl 1500.76017
[11] Fasano, A.; Pezza, L., On a temperature-dependent Hele-Shaw flow in one dimension, Rend. Mat. Accad. Lincei Sci. (9), 12, 57-67 (2001) · Zbl 1170.76326
[12] Gilbert, R. P.; Shi, P., Nonisothermal, non-Newtonian Hele-Shaw flows, Part II: Asymptotics and existence of weak solutions, Nonlin. Anal. Theory, Methods Appl., 27, 539-559 (1996) · Zbl 0909.76004
[13] Gilbert, R. P.; Fang, M., Nonlinear systems arising from nonisothermal, non-Newtonian Hele-Shaw flows in the presence of body forces and sources, Math. Comput. Model., 35, 1425-1444 (2002) · Zbl 1077.76515
[14] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (AM-105), vol. 105 (2016), Princeton University Press
[15] Grisvard, P., Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics (2011) · Zbl 1231.35002
[16] Hele-Shaw, H. S., The flow of water, Nature, 58, 34-36 (1898) · JFM 30.0680.02
[17] Maly, J.; Ziemer, W. P., Fine Regularity of Solutions of Elliptic Partial Differential Equations (1997), American Mathematical Society · Zbl 0882.35001
[18] Nečas, J., Direct Methods in the Theory of Elliptic Equations (2011), Springer Science & Business Media
[19] Nogueira, A.; Nakasato, J. C.; Pereira, M. C., Concentrated reaction terms on the boundary of rough domains for a quasilinear equation, Appl. Math. Lett., 102, 106-120 (2020) · Zbl 1440.35008
[20] Smith, J. M.; Van Ness, H. C.; Abbott, M. M.; Swihart, M. T., Introduction to Chemical Engineering Thermodynamics (2017), McGraw Hill
[21] Zhikov, V. V., Meyers type estimates for the solution of a non linear Stokes system, Differ. Equ., 33, 108-115 (1997) · Zbl 0911.35089
[22] Zhikov, V. V.; Pastukhova, S. E., Improved integrability of the gradients of solutions of elliptic equations with variable nonlinearity exponent, Sb. Math., 199, 12, 1751 (2008) · Zbl 1172.35024
[23] Zhu, J.; Zhang, J.; Loula, A. F.; Bevilacqua, L., Mixed variational formulation and numerical analysis of thermally coupled nonlinear Darcy flows, SIAM J. Numer. Anal., 51, 2746-2772 (2013) · Zbl 1282.76129
[24] Wang, L.; Xu, Q.; Zhao, P., Convergence rates on periodic homogenization of p-Laplace type equations, Nonlinear Anal., Real World Appl., 49, 418-459 (2019) · Zbl 1430.35019
[25] Wilkes, J. O., Fluid Mechanics for Chemical Engineers with Microfluidics, CFD and COMSOL, International Series in the Physical and Chemical Engineering Sciences (2005), Prentice Hall
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.