×

The \(p\)-Laplacian equation in thin domains: the unfolding approach. (English) Zbl 1455.35008

Summary: In this work we apply the so called Unfolding Operator Method to analyze the asymptotic behavior of the solutions of the \(p\)-Laplacian equation with Neumann boundary condition in a bounded thin domain of the type \(R^\varepsilon = \left\{ ( x , y ) \in \mathbb{R}^2 : x \in ( 0 , 1 ) \text{ and } 0 < y < \varepsilon g ( x / \varepsilon^\alpha ) \right\}\) where \(g\) is a positive periodic function. We study the three cases \(0 < \alpha < 1, \alpha = 1\) and \(\alpha > 1\) representing respectively weak, resonant and high oscillations at the top boundary. In the three cases we deduce the homogenized limit and obtain correctors.

MSC:

35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
35J92 Quasilinear elliptic equations with \(p\)-Laplacian
35J25 Boundary value problems for second-order elliptic equations

References:

[1] Anguiano, M.; Suárez-Grau, F. J.Z., Homogenization of an incompressible non-Newtonian flow through a thin porous medium, Z. Angew. Math. Phys., 68, Article 45 pp. (2017) · Zbl 1365.76006
[2] Arrieta, J. M.; Carvalho, A. N.; Pereira, M. C.; Silva, R. P., Semilinear parabolic problems in thin domains with a highly oscillatory boundary, Nonlinear Anal., Theory Methods Appl., 74, 15, 5111-5132 (2011) · Zbl 1223.35038
[3] Arrieta, J. M.; Pereira, M. C., Homogenization in a thin domain with an oscillatory boundary, J. Math. Pures Appl., 96, 29-57 (2011) · Zbl 1223.35039
[4] Arrieta, J. M.; Pereira, M. C., The Neumann problem in thin domains with very highly oscillatory boundaries, J. Math. Anal. Appl., 444, 1, 86-104 (2013) · Zbl 1304.35056
[5] Arrieta, J. M.; Villanueva-Pesqueira, M., Unfolding operator method for thin domains with a locally periodic highly oscillatory boundary, SIAM J. Math. Anal., 48, 3, 1634-1671 (2016) · Zbl 1338.35026
[6] Arrieta, J. M.; Villanueva-Pesqueira, M., Thin domains with non-smooth oscillatory boundaries, J. Math. Anal. Appl., 446, 1, 130-164 (2017) · Zbl 1350.35016
[7] Aiyappan, S.; Nandakumaran, A. K.; Prakash, R., Generalization of unfolding operator for highly oscillating smooth boundary domains and homogenization, Calc. Var., 57, 86 (2018) · Zbl 1403.35029
[8] Bella, P.; Feireisl, E.; Novotny, A., Dimension reduction for compressible viscous fluids, Acta Appl. Math., 134, 111-121 (2014) · Zbl 1306.35093
[9] Benes, M.; Pazanin, I., Effective flow of incompressible micropolar fluid through a system of thin pipes, Acta Appl. Math., 143, 1, 29-43 (2016) · Zbl 1381.76334
[10] Bensoussan, A.; Lions, J. L.; Papanicolaou, G., Asymptotic Analysis for Periodic Structures (1978), North-Holland Publ. Company · Zbl 0411.60078
[11] Cioranescu, D.; Damlamian, A.; Griso, G., Periodic unfolding and homogenization, C. R. Acad. Sci. Paris, Ser. I, 335, 99-104 (2002) · Zbl 1001.49016
[12] Cioranescu, D.; Damlamian, A.; Griso, G., The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40, 4, 1585-1620 (2008) · Zbl 1167.49013
[13] Cioranescu, D.; Damlamian, A.; Griso, G., The Periodic Unfolding Method, Series in Contemporary Mathematics, vol. 3 (2018), Springer · Zbl 1167.49013
[14] Cioranescu, D.; Saint, J.; Paulin, Jean, Homogenization of Reticulated Structures (1999), Springer-Verlag · Zbl 0929.35002
[15] Dal Maso, G.; Defranceschi, A., Correctors for the homogenization of monotone operators, Differ. Integral Equ., 3, 3, 1151-1166 (1990) · Zbl 0733.35005
[16] Damlamian, A.; Pettersson, K., Homogenization of oscillating boundaries, Discrete Contin. Dyn. Syst., 23, 197-219 (2009) · Zbl 1173.35333
[17] Donato, P.; Moscariello, G., On the homogenization of some nonlinear problems in perforated domains, Rend. Semin. Mat. Univ. Padova, 84, 91-108 (1990) · Zbl 0755.35040
[18] Gaudiello, A.; Hamdache, K., The polarization in a ferroelectric thin film: local and nonlocal limit problems, ESAIM Control Optim. Calc. Var., 19, 657-667 (2013) · Zbl 1291.35384
[19] Gaudiello, A.; Hamdache, K., A reduced model for the polarization in a ferroelectric thin wire, NoDEA Nonlinear Differ. Equ. Appl., 22, 6, 1883-1896 (2015) · Zbl 1328.35229
[20] Hale, J. K.; Raugel, G., Reaction-diffusion equations on thin domains, J. Math. Pures Appl., 9, 71, 33-95 (1992) · Zbl 0840.35044
[21] Lindqvist, P., Notes on the p-Laplace Equation (2017), University of Jyväskylä
[22] Mel‘nyk, T. A.; Popov, A. V., Asymptotic analysis of boundary-value problems in thin perforated domains with rapidly varying thickness, Nonlinear Oscil., 13, 57-84 (2010) · Zbl 1334.74057
[23] Nogueira, A.; Nakasato, J. C.; Pereira, M. C., Concentrated reaction terms on the boundary of rough domains for a quasilinear equation, Appl. Math. Lett., 102, Article 106120 pp. (2020) · Zbl 1440.35008
[24] Pazanin, I.; Súarez-Grau, F. J., Effects of rough boundary on the heat transfer in a thin-film flow, C. R., Méc., 341, 8, 646-652 (2012)
[25] Pereira, M. C., Asymptotic analysis of a semilinear elliptic equation in highly oscillating thin domains, Z. Angew. Math. Phys., 67, 1-14 (2016) · Zbl 1372.35105
[26] Pereira, M. C.; Silva, R. P., Remarks on the p-laplacian on thin domains, Prog. Nonlinear Differ. Equ. Appl., 389-403 (2015) · Zbl 1333.35082
[27] Sánchez-Palencia, E., Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, vol. 127 (1980), Springer Verlag · Zbl 0432.70002
[28] Villanueva-Pesqueira, M., Homogenization of Elliptic problems in thin domains with oscillatory boundaries (2016), Universidad Complutense de Madrid, Ph.D. Thesis · Zbl 1338.35026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.