×

High-order spectral method of density estimation for stochastic differential equation driven by multivariate Gaussian random variables. (English) Zbl 1531.65204

The scientific problem addressed in the paper involves the development of efficient and high-order numerical methods for density estimation in Stochastic Partial Differential Equations (SPDEs) driven by multivariate Gaussian random variables. Previous research in this area has primarily focused on SPDEs with independent random variables, with less attention given to those driven by multivariate Gaussian random variables.
To solve this problem, the author proposes a high-order algorithm based on the generalized Polynomial Chaos (gPC) approach. The methodology involves several key steps: firstly, constructing a new multivariate orthogonal basis through the Gauss-Schmidt orthogonalization process; secondly, assuming that the unknown function in the SPDE can be expanded in terms of this stochastic gPC basis; thirdly, implementing the stochastic gPC expansion for the SPDE in multivariate Gaussian measure space; and finally, performing numerical calculations to derive deterministic differential equations for the coefficients of the expansion. Additionally, the paper utilizes a high-order gPC-based algorithm for both density and moment estimation.
The main findings of the research are significant. The newly proposed numerical method is applied to well-known random function stochastic equations, specifically a 1D wave equation and a 2D Schnakenberg model, both driven by bivariate Gaussian random variables. The efficiency of the proposed method is compared with the traditional Monte-Carlo method. The results demonstrate that the proposed high-order spectral method provides a more efficient and accurate approach for density estimation in stochastic differential equations driven by multivariate Gaussian random variables. The paper significantly contributes to the field by providing a novel method that enhances the precision and efficiency of density estimation in complex SPDEs.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65C05 Monte Carlo methods
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
62G07 Density estimation
35R60 PDEs with randomness, stochastic partial differential equations

References:

[1] Le Maître, O. P.; Mathelin, L.; Knio, O. M.; Yousuff Hussaini, M., Asynchronous time integration for polynomial chaos expansion of uncertain periodic dynamics, Discrete and Continuous Dynamical Systems, 28, 1, 199-226 (2010) · Zbl 1198.37072 · doi:10.3934/dcds.2010.28.199
[2] Najm, H. N., Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics, Annual Review of Fluid Mechanics, 41, 35-52 (2009) · Zbl 1168.76041 · doi:10.1146/annurev.fluid.010908.165248
[3] Ditkowski, A.; Fibich, G.; Sagiv, A., Density estimation in uncertainty propagation problems using a surrogate model, SIAM/ASA Journal on Uncertainty Quantification, 8, 1, 261-300 (2020) · Zbl 1483.65024 · doi:10.1137/18M1205959
[4] Sudret, B.; Der Kiureghian, A., Stochastic finite element methods and reliability: a state-of-the-art report (2000), Berkeley: Department of Civil and Environmental Engineering, University of California, Berkeley
[5] Colombo, I.; Nobile, F.; Porta, G.; Scotti, A.; Tamellini, L., Uncertainty quantification of geochemical and mechanical compaction in layered sedimentary basins, Computer Methods in Applied Mechanics and Engineering, 328, 122-146 (2018) · Zbl 1439.74400 · doi:10.1016/j.cma.2017.08.049
[6] Madras, N. N., Lectures on Monte Carlo Methods (2002), American Mathematical Soc. · Zbl 0987.65003
[7] Kamiński, M., Uncertainty analysis in solid mechanics with uniform and triangular distributions using stochastic perturbation-based Finite Element Method, Finite Elements in Analysis and Design, 200 (2022) · doi:10.1016/j.finel.2021.103648
[8] Xie, H., An efficient and spectral accurate numerical method for computing SDE driven by multivariate Gaussian variables, AIP Advances, 12, 7 (2022) · doi:10.1063/5.0096285
[9] Rahman, S., Wiener-Hermite polynomial expansion for multivariate Gaussian probability measures, Journal of Mathematical Analysis and Applications, 454, 1, 303-334 (2017) · Zbl 1373.60071 · doi:10.1016/j.jmaa.2017.04.062
[10] Rahman, S., A polynomial chaos expansion in dependent random variables, Journal of Mathematical Analysis and Applications, 464, 1, 749-775 (2018) · Zbl 1397.60069 · doi:10.1016/j.jmaa.2018.04.032
[11] Jakeman, J. D.; Franzelin, F.; Narayan, A.; Eldred, M.; Plfüger, D., Polynomial chaos expansions for dependent random variables, Computer Methods in Applied Mechanics and Engineering, 351, 643-666 (2019) · Zbl 1441.65014 · doi:10.1016/j.cma.2019.03.049
[12] Chevreuil, M.; Lebrun, R.; Nouy, A.; Rai, P., A least-squares method for sparse low rank approximation of multivariate functions, SIAM/ASA Journal on Uncertainty Quantification, 3, 1, 897-921 (2015) · Zbl 1327.65029 · doi:10.1137/13091899X
[13] Doostan, A.; Owhadi, H., A non-adapted sparse approximation of PDEs with stochastic inputs, Journal of Computational Physics, 230, 8, 3015-3034 (2011) · Zbl 1218.65008 · doi:10.1016/j.jcp.2011.01.002
[14] Jakeman, J. D.; Eldred, M. S.; Sargsyan, K., Enhancing \(\mathfrak{l}_1\)-minimization estimates of polynomial chaos expansions using basis selection, Journal of Computational Physics, 289, 18-34 (2015) · Zbl 1352.65026 · doi:10.1016/j.jcp.2015.02.025
[15] Tang, T.; Zhou, T., On discrete least-squares projection in unbounded domain with random evaluations and its application to parametric uncertainty quantification, SIAM Journal on Scientific Computing, 36, 5, A2272-A2295 (2014) · Zbl 1305.41008 · doi:10.1137/140961894
[16] Witteveen, J. A. S.; Bijl, H., Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos, 44th AIAA Aerospace Sciences Meeting and Exhibit, ARC · doi:10.2514/6.2006-896
[17] Yan, L.; Guo, L.; Xiu, D., Stochastic collocation algorithms using \(\mathfrak{l} 1\)-minimization, International Journal for Uncertainty Quantification, 2, 3, 279-293 (2012) · Zbl 1291.65024 · doi:10.1615/Int.J.UncertaintyQuantification.2012003925
[18] Navarro, M.; Witteveen, J.; Blom, J., Polynomial chaos expansion for general multivariate distributions with correlated variables (2014) · doi:10.48550/arXiv.1406.5483
[19] Savinov, E.; Shamraeva, V., On a Rosenblatt-type transformation of multivariate copulas, Econometrics and Statistics, 25, 39-48 (2023) · doi:10.1016/j.ecosta.2021.10.016
[20] Zhang, M.; Zhang, A.; Zhou, Y., Construction of uniform designs on arbitrary domains by inverse rosenblatt transformation, Contemporary Experimental Design, Multivariate Analysis and Data Mining, 111-126 (2020), Springer · doi:10.1007/978-3-030-46161-4_7
[21] Sen, P. K., Introduction to nonparametric estimation by Alexandre B. Tsybakov, International Statistical Review, 79, 2, 291-292 (2011) · doi:10.1111/j.1751-5823.2011.00149_18.x
[22] Wasserman, L., All of Statistics: A Concise Course in Statistical Inference (2004), New York: Springer, New York · Zbl 1053.62005
[23] Savin, É.; Faverjon, B., Computation of higher-order moments of generalized polynomial chaos expansions, International Journal for Numerical Methods in Engineering, 111, 12, 1192-1200 (2017) · Zbl 07867092 · doi:10.1002/nme.5505
[24] Luo, W., Wiener chaos expansion and numerical solutions of stochastic partial differential equations (2006), California Institute of Technology, Ph.D. dissertation · doi:10.7907/RPKX-BN02
[25] Trefethen, L. N., Approximation Theory and Approximation Practice, Extended Edition (2019), SIAM · doi:10.1137/1.9781611975949
[26] Wang, H.; Xiang, S., On the convergence rates of Legendre approximation, Mathematics of Computation, 81, 861-877 (2012) · Zbl 1242.41016 · doi:10.1090/S0025-5718-2011-02549-4
[27] Xiu, D., Numerical Methods for Stochastic Computations: A Spectral Method Approach (2010), Princeton University Press · Zbl 1210.65002
[28] Hesthaven, J. S.; Gottlieb, S.; Gottlieb, D., Spectral Methods for Time-dependent Problems (2007), Cambridge University Press · Zbl 1111.65093 · doi:10.1017/CBO9780511618352
[29] Oladyshkin, S.; Nowak, W., Incomplete statistical information limits the utility of high-order polynomial chaos expansions, Reliability Engineering & System Safety, 169, 137-148 (2018) · doi:10.1016/j.ress.2017.08.010
[30] Zhang, Q.; Xu, L., Evaluation of moments of performance functions based on polynomial chaos expansions, International Journal of Mechanics and Materials in Design, 18, 395-405 (2022) · doi:10.1007/s10999-021-09585-3
[31] Cheng, R.; Wu, L.; Pang, C.; Wang, H., A Fourier collocation method for Schrödinger-Poisson system with perfectly matched layer, Communications in Mathematical Sciences, 20, 2, 523-542 (2022) · Zbl 1480.65354 · doi:10.4310/CMS.2022.v20.n2.a10
[32] Shen, J.; Tang, T.; Wang, L.-L., Spectral Methods: Algorithms, Analysis and Applications (2011), Springer Science & Business Media · Zbl 1227.65117
[33] Wang, H., A time-splitting spectral method for coupled Gross-Pitaevskii equations with applications to rotating Bose-Einstein condensates, Journal of Computational and Applied Mathematics, 205, 1, 88-104 (2007) · Zbl 1118.65112 · doi:10.1016/j.cam.2006.04.042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.