×

Copula-based Markov chain models for stationary time series: parametric estimation and statistical process control. (Japanese. English summary) Zbl 07660125

Summary: This article introduces copula-based Markov chain models to be fitted for a serially correlated time series. As their major applications, we also review statistical process control methods under the normal distribution model. We first give a general introduction to copulas and Markov chain models to explain the mathematical properties of copulas for modeling correlated data. Next, we introduce copula-based Markov chain models and various statistical inference procedures, such as the maximum likelihood estimation under the normal distribution model. We provide several real data examples to demonstrate the usefulness of the proposed methods. Appendix contains our R codes for reproducing the data analysis results.

MSC:

62-XX Statistics
Full Text: DOI

References:

[1] Albers, W. and Kallenberg, W. C. (2007). Shewhart control charts in new perspective, Sequential Analysis, 26(2), 123-151. · Zbl 1111.62116
[2] Billingsley, P. (1961). Statistical inference for Markov Processes, University of Chicago Press, Chicago. · Zbl 0106.34201
[3] Box, G. and Jenkins, G. (1990). Time Series Analysis, Forecasting and Control, Holden-Day, Inc. · Zbl 0249.62009
[4] Box, G. and Narasimhan, S. (2010). Rethinking statistics for quality control, Quality Engineering, 22(2), 60-72.
[5] Chen, X. and Fan, Y. (2006). Estimation of copula-based semiparametric time series models, J. Econom., 130(2), 307-335. · Zbl 1337.62201
[6] Cherubini, U., Luciano, E. and Vecchiato, W. (2004). Copula Methods in Finance, John Wiley & Sons. · Zbl 1163.62081
[7] Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65(1), 141-151. · Zbl 0394.92021
[8] Costa, E., Schneider, S., Carlotto, G., Cabalheiro, T. and Oliveira Junior, M. (2021). Zero-inflated-censored Weibull and gamma regression models to estimate wild boar population dispersal distance, Jpn. J. Stat. Data Sci., doi:10.1007/s42081-021-00124-0. · Zbl 1478.62323
[9] Curto, J., Pinto, J. and Tavares, G. (2009). Modeling stock markets volatility using Garch models with normal, students t and stable Paretian distributions, Statistical Papers, 50(2), 311-321. · Zbl 1312.91094
[10] Darsow, W. F., Nguyen, B. and Olsen, E. T. (1992). Copulas and Markov processes, Ill. J. Math., 36(4), 600-642. · Zbl 0770.60019
[11] de Oliveira Peres, M. V., Achcar, J. A. and Martinez, E. Z. (2020). Bivariate lifetime models in presence of cure fraction: a comparative study with many different copula functions, Heliyon, 6(6), e03961.
[12] Domma, F., Giordano, S. and Perri, P. F. (2009). Statistical modeling of temporal dependence in financial data via a copula function, Commnun. in Statist.: Simulation and Computation, 38(4), 703-728. · Zbl 1290.62096
[13] Durante, F. and Sempi, C. (2016). Principles of Copula Theory, Chapman and Hall/CRC. · Zbl 1380.62008
[14] Emura, T. and Chen, Y. H. (2016). Gene selection for survival data under dependent censoring: A copula-based approach, Statistical Methods in Medical Research, 25(6), 2840-2857.
[15] Emura, T. and Chen, Y. H. (2018), Analysis of Survival Data with Dependent Censoring, Copula-Based Approaches, JSS Research Series in Statistics, Springer. · Zbl 1464.62001
[16] Emura, T. and Hsu, J. H. (2020). Estimation of the Mann—Whitney effect in the two-sample problem under dependent censoring, Comput. Stat. Data Anal., 150, 106990. · Zbl 1510.62400
[17] 江村剛志,道前洋史 (2020).「コピュラを用いた生存時間解析—相関のあるエンドポイントとメタ分析の活用—」『統計数理』68(1), 147-174.
[18] Emura, T. and Pan, C. H. (2020). Parametric maximum likelihood inference and goodness-of-fit tests for dependently left-truncated data, a copula-based approach, Statistical Papers, 61, 479-501. · Zbl 1437.62180
[19] Emura, T. and Shiu, S. K. (2016). Estimation and model selection for left-truncated and right-censored lifetime data with application to electric power transformers analysis, Commnun. in Statist.: Simulation and Computation, 45(9), 3171-3189. · Zbl 1349.62457
[20] Emura, T. and Wang, W. (2012) Nonparametric maximum likelihood estimation for dependent truncation data based on copulas, J. Multivar. Anal., 110, 171-188. · Zbl 1244.62041
[21] Emura, T., Long, T. H. and Sun, L. H. (2017a). R routines for performing estimation and statistical process control under copula-based time series models, Commnun. in Statist.: Simulation and Computation, 46(4), 3067-3087. · Zbl 1373.62583
[22] Emura, T., Nakatochi, M., Murotani, K. and Rondeau, V. (2017b). A joint frailty-copula model between tumour progression and death for meta-analysis, Statistical Methods in Medical Research, 26(6), 2649-2666.
[23] Emura, T., Nakatochi, M., Matsui, S., Michimae, H. and Rondeau, V. (2018). Personalized dynamic prediction of death according to tumour progression and high-dimensional genetic factors: Meta-analysis with a joint model, Statistical Methods in Medical Research, 27(9), 2842-2858.
[24] Emura, T., Matsui, S. and Rondeau, V. (2019). Survival Analysis with Correlated Endpoints Joint Frailty-Copula Models, JSS Research Series in Statistics, Springer. · Zbl 1429.62003
[25] Emura, T., Shih, J. H., Ha, I. D. and Wilke, R. A. (2020). Comparison of the marginal hazard model and the sub-distribution hazard model for competing risks under an assumed copula, Statistical Methods in Medical Research, 29(8), 2307-2327.
[26] Emura, T., Sofeu, C. and Rondeau, V. (2021). Conditional copula models for correlated survival endpoints: individual patient data meta-analysis of randomized controlled trials, in review.
[27] Ghosh, S., Sheppard, L. W., Holder, M. T., Loecke, T. D., Reid, P. C., Bever, J. D. and Reuman, D. C. (2020). Copulas and their potential for ecology, in Advances in Ecological Research (Vol. 62, pp. 409-468). Academic Press.
[28] Hill, S. E. and Schvaneveldt, S. J. (2011) Using statistical process control charts to identify the steroids era in major league baseball: An educational exercise, Journal of Statistics Education, 19, 1-19.
[29] Huang, X. W. and Emura, T. (2019). Model diagnostic procedures for copula-based Markov chain models for statistical process control, Commnun. in Statist.: Simulation and Computation, doi:10.1080/03610918.2019.1602647. · Zbl 1497.62354
[30] Huang, X. W., Wang, W. and Emura, T. (2020). A copula-based Markov chain model for serially dependent event times with a dependent terminal event, Jpn. J. Stat. Data Sci., doi:10.1007/s42081-020-00087-8. · Zbl 1478.62257
[31] Joe, H. (1993). Parametric families of multivariate distributions with given margins, J. Multivar. Anal., 46(2), 262-282. · Zbl 0778.62045
[32] Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts, Chapman and Hall/CRC. · Zbl 0990.62517
[33] Joe, H. (2005). Asymptotic efficiency of the two-stage estimation method for copula-based models, J. Multivar. Anal., 94(2), 401-419. · Zbl 1066.62061
[34] 加藤昇吾,吉羽要直(2020). 特集「複雑な依存構造を持つデータの統計解析法 —コピュラとその周辺—」『統計数理』68(1), 1-3.
[35] Kim, J. M., Baik, J. and Reller, M. (2021a). Control charts of mean and variance using copula Markov SPC and conditional distribution by copula, Commnun. in Statist.: Simulation and Computation, 50(1), 85-102. · Zbl 1490.62503
[36] Kim, K., Ko, J. and Kang, S. (2021b). Comparison of variance estimation methods in semiparametric accelerated failure time models for multivariate failure time data, Jpn. J. Stat. Data Sci., doi:10.1007/s42081-021-00126-y. · Zbl 1478.62302
[37] Konno, Y. (1988). Exact moments of the multivariate F and beta distributions, J. Jpn. Stat. Soc., 18(2), 123-130. · Zbl 0669.62031
[38] Kwon, S., Ha, I. D., Shih, J. H. and Emura, T. (2021). A flexible parametric copula modeling approach for clustered survival data, Pharm. Stat., doi.org/10.1002/pst.2153.
[39] 桑野将司,藤原章正,塚井誠人,張峻屹,岩本真由子 (2010).「コピュラを用いた自動車保有期間と走行距離の同時決定モデルの開発」『土木学会論文集D』66(1), 54-63.
[40] Li, F., Tang, Y. and Wang, H. J. (2019). Copula-based semiparametric analysis for time series data with detection limits, Canadian Journal of Statistics, 47(3), 438-454. · Zbl 1522.62084
[41] Lin, W. C., Emura, T. and Sun, L. H. (2019) Estimation under copula-based Markov normal mixture models for serially correlated data, Commnun. in Statist.: Simulation and Computation, doi:10.1080/03610918.2019.1652318. · Zbl 07553345
[42] Lipowski, C., Lo, S. M., Shi, S. and Wilke, R. A. (2021). Competing risks regression with dependent multiple spells: Monte Carlo evidence and an application to maternity leave, Jpn. J. Stat. Data Sci., doi:10.1007/s42081-021-00110-6. · Zbl 1478.62296
[43] Long, T. H. and Emura, T. (2014). A control chart using copula-based Markov chain models, Journal of the Chinese Statistical Association, 52(4), 466-496.
[44] Longla, M. and Peligrad, M. (2012). Some aspects of modeling dependence in copula-based Markov chains, J. Multivar. Anal., 111, 234-240. · Zbl 1301.60089
[45] Mastrangelo, C. M. and Montgomery, D. C. (1995). SPC with correlated observations for the chemical and process industries, Qual. Reliab. Eng. Int., 11(2), 79-89.
[46] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques and Tools, Princeton University Press, New York. · Zbl 1089.91037
[47] Michimae, H., Matsunami, M. and Emura, T. (2020). Robust ridge regression for estimating the effects of correlated gene expressions on phenotypic traits, Environmental and Ecological Statistics, 27, 41-72.
[48] Mitra, D., Kundu, D. and Balakrishnan, N. (2021). Likelihood analysis and stochastic EM algorithm for left truncated right censored data and associated model selection from the Lehmann family of life distributions, Jpn. J. Stat. Data Sci., doi:10.1007/s42081-021-00115-1. · Zbl 1478.62288
[49] Montgomery, D. C. (2009). Statistical Quality Control (Vol. 7), Wiley New York. · Zbl 1274.62015
[50] Moreira, C., de Uña-Álvarez, J. and Braekers, R. (2021). Nonparametric estimation of a distribution function from doubly truncated data under dependence, Compututational Statistics, doi:10.1007/s00180-021-01085-4. · Zbl 1505.62294
[51] 中嶋雅彦,酒折文武,川崎能典 (2017).「整数値自己回帰モデルの最近の発展」『統計数理』65(2), 323-339.
[52] Nelsen, R. B. (1986). Properties of a one-parameter family of bivariate distributions with specified marginals, Commun. Stat., Theory and Methods, 15(11), 3277-3285. · Zbl 0616.62067
[53] Nelsen, R. B. (2006). An Introduction to Copulas, Second Edition, Springer. · Zbl 1152.62030
[54] Ota, S. and Kimura, M. (2021), Effective estimation algorithm for parameters of multivariate Farlie-Gumbel-Morgenstern copula, Jpn. J. Stat. Data Sci., doi:10.1007/s42081-021-00118-y. · Zbl 1478.62113
[55] Platen, E. and Rendek, R. (2008). Empirical evidence on student-t log-returns of diversified world stock indices, Journal of Statistical Theory and Practice, 2(2), 233-251. · Zbl 1427.62122
[56] Platen, E. and Stahl, G. (2003). A structure for general and specific market risk, Comp. Stat., 18(3), 355-373. · Zbl 1039.91048
[57] Rotolo, F., Legrand, C. and Van Keilegom, I. (2013). A simulation procedure based on copulas to generate clustered multi-state survival data, Comput. Methods Programs Biomed., 109(3), 305-312.
[58] Rotolo, F., Paoletti, X. and Michiels, S. (2018). Surrosurv: An R package for the evaluation of failure time surrogate endpoints in individual patient data meta-analyses of randomized clinical trials, Comput. Methods Programs Biomed., 155, 189-198.
[59] Santitissadeekorn, N., Lloyd, D. J., Short, M. B. and Delahaies, S (2020). Approximate filtering of conditional intensity process for Poisson count data: Application to urban crime, Comput. Stat. Data Anal., 144, 106850. · Zbl 1504.62181
[60] Shih, J. H. and Emura, T. (2021) On the copula correlation ratio and its generalization, J. Multivar. Anal., 182, 104708. · Zbl 1461.62059
[61] Shih, J. H., Chang, Y. T., Konno, Y. and Emura, T. (2018). Maximum likelihood estimation of a common mean vector in the bivariate FGM copula model for meta-analysis, 2018 Japanese Joint Statistical Meeting, Tokyo, http://www.jfssa.jp/taikai/2018/table/program_detail/pdf/201-250/J10240.pdf. · Zbl 1418.62236
[62] Shih, J. H., Konno, Y., Chang, Y. T. and Emura, T. (2019). Estimation of a common mean vector in bivariate meta-analysis under the FGM copula, Statistics, 53(3), 673-695. · Zbl 1418.62236
[63] Shinohara, S., Lin, Y. H., Michimae, H. and Emura, T. (2020) Dynamic lifetime prediction using a Weibull-based bivariate failure time model: A meta-analysis of individual-patient data, Commnun. in Statist.: Simulation and Computation, DOI:10.1080/03610918.2020.1855449. · Zbl 07713487
[64] Sklar, M. (1959). Fonctions de repartition an dimensions et leurs marges, Publications de l’Institut de Statistique de l’Université de Paris, 8, 229-231. · Zbl 0100.14202
[65] Sofeu, C., Emura, T. and Rondeau, V. (2021). A joint frailty-copula model for meta-analytic validation of failure time surrogate endpoints in clinical trials, Biom. J., 63(2), 423-446. · Zbl 1523.62206
[66] Sonmez, O. E. and Baray, A. (2019). On copula based serial dependence in statistical process control, in Industrial Engineering in the Big Data Era (pp. 127-136), Springer.
[67] Stoeber, J., Joe, H. and Czado, C. (2013). Simplified pair copula constructions—limitations and extensions, J. Multivar. Anal., 119, 101-118. · Zbl 1277.62139
[68] Sun, L. H., Huang, X. W., Alqawba, M. S., Kim, J. M. and Emura, T. (2020a), Copula-based Markov Models for Time Series-Parametric Inference and Process Control, JSS Research Series in Statistics, Springer. · Zbl 1435.62020
[69] Sun, L. H., Lee, C. S. and Emura, T. (2020b). A Bayesian inference for time series via copula-based Markov chain models, Commnun. in Statist.: Simulation and Computation, 49(11), 2897-2913. · Zbl 1489.62289
[70] 戸坂凡展,吉羽要直 (2005).「コピュラの金融実務での具体的な活用方法の解説」『金融研究』24(2), 115-162.
[71] 塚原英敦 (2003).「接合分布関数とその応用—統計的従属性と1次元周辺分布を所与とした多変量モデリング」『応用統計学』32(2), 77-88.
[72] Wang, F., Li, H. and Dong, C. (2021). Understanding near-miss count data on construction sites using D-vine copula marginal regression, Reliability Engineering & System Safety, 107687.
[73] Wang, Y. C., Emura, T., Fan, T. H., Lo, S. M. and Wilke, R. A. (2020). Likelihood-based inference for a frailty-copula model based on competing risks failure time data, Qual. Reliab. Eng. Int., 36(5), 1622-1638.
[74] Weiß, C. H. and Kim, H. Y. (2013a). Binomial AR(1) processes: moments, cumulants, and estimation, Statistics, 47(3), 494-510. · Zbl 1327.62477
[75] Weiß, C. H. and Kim, H. Y. (2013b). Parameter estimation for binomial AR(1) models with applications in finance and industry, Statistical Papers, 54(3), 563-590. · Zbl 1307.62061
[76] Weiß, C. H., Homburg, A. and Puig, P. (2019). Testing for zero inflation and overdispersion in INAR (1) models, Statistical Papers, 60(3), 823-848. · Zbl 1420.62401
[77] Wieringa, J. E. (1999). Statistical Process Control for Serially Correlated Data, Labyrint Publication.
[78] Wu, B. H., Michimae, H. and Emura, T. (2020). Meta-analysis of individual patient data with semi-competing risks under the Weibull joint frailty-copula model, Comp. Stat., 35(4), 1525-1552. · Zbl 1505.62423
[79] Yela, J. P., Rafael, J. and Cuevas, T. (2018). Estimating the Gumbel-Barnett copula parameter of dependence, Revista Colombiana de Estadística, 41(1), 53-73. · Zbl 1435.62179
[80] 吉羽要直 (2020).「非対称t接合関数の性質と統計的推定方法: 資産価格変動への応用」『統計数理』68(1), 45-63.
[81] Zhang, S., Zhou, Q. M. and Lin, H. (2020). Goodness-of-fit test of copula functions for semi-parametric univariate time series models, Statistical Papers, 10.1007/s00362-019-01153-4. · Zbl 1478.62274
[82] Zhou, Y., Lu, Z., Shi, Y. and Cheng, K. (2019). The copula-based method for statistical analysis of step-stress accelerated life test with dependent competing failure modes, Proc. IMechE. Part O, Risk and Reliability, 233(3), 401-418.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.