×

Global existence, blow-up and stability for a stochastic transport equation with non-local velocity. (English) Zbl 1494.60070

Summary: In this paper we investigate a non-linear and non-local one dimensional transport equation under random perturbations on the real line. We first establish a local-in-time theory, i.e., existence, uniqueness and blow-up criterion for pathwise solutions in Sobolev spaces \(H^s\) with \(s > 3\). Thereafter, we give a picture of the long time behavior of the solutions based on the type of noise we consider. On one hand, we identify a family of noises such that blow-up can be prevented with probability 1, guaranteeing the existence and uniqueness of global solutions almost surely. On the other hand, in the particular linear noise case, we show that singularities occur in finite time with positive probability, and we derive lower bounds of these probabilities. To conclude, we introduce the notion of stability of exiting times and show that one cannot improve the stability of the exiting time and simultaneously improve the continuity of the dependence on initial data.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35Q51 Soliton equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35B44 Blow-up in context of PDEs
35Q91 PDEs in connection with game theory, economics, social and behavioral sciences

References:

[1] Alonso-Orán, D.; Bethencourt de León, A.; Takao, S., The Burgers’ equation with stochastic transport: shock formation, local and global existence of smooth solutions, Nonlinear Differ. Equ. Appl., 26, 6, Article 57 pp. (2019), 33 · Zbl 1430.35280
[2] Alonso-Orán, D.; Bethencourt de León, A., On the well-posedness of stochastic Boussinesq equations with transport noise, J. Nonlinear Sci., 30, 1, 175-224 (2020) · Zbl 1431.35120
[3] Alonso-Orán, D.; Rohde, C.; Tang, H., A local-in-time theory for singular SDEs with applications to fluid models with transport noise, J. Nonlinear Sci., 31, 98 (2021) · Zbl 1477.60105
[4] Barker, G. R.; Li, X.; Morlet, A. C., Analytic structure of two 1D-transport equations with non-local fluxes, Phys. D: Nonlinear Phenom., 91, 4, 349-375 (1996) · Zbl 0899.76104
[5] Bethencourt, A.; Takao, S., Well-posedness by noise for linear advection of k-forms (2019)
[6] Bensoussan, A., Stochastic Navier-Stokes equations, Acta Appl. Math., 38, 3, 267-304 (1995) · Zbl 0836.35115
[7] Brzeźniak, Z.; Maslowski, B.; Seidler, J., Stochastic non-linear beam equations, Probab. Theory Relat. Fields, 132, 1, 119-149 (2005) · Zbl 1071.60053
[8] Brzeźniak, Z.; Motyl, E., Fractionally dissipative stochastic quasi-geostrophic type equations on \(\mathbb{R}^d\), SIAM J. Math. Anal., 51, 3, 2306-2358 (2019) · Zbl 1419.60049
[9] Crisan, D.; Flandoli, F.; Holm, D. D., Solution properties of a 3D stochastic Euler fluid equation, J. Nonlinear Sci., 29, 3, 813-870 (2019) · Zbl 1433.60051
[10] Lang, O.; Crisan, D., Well-posedness for a stochastic 2-D Euler equation with transport noise, (Stochastic and Partial Differential Equations: Analysis and Computations (2022))
[11] Córdoba, A.; Córdoba, D.; Fontelos, M. A., Formation of singularities for a transport equation with nonlocal velocity, Ann. Math. (2), 162, 3, 1377-1389 (2005) · Zbl 1101.35052
[12] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and Its Applications, vol. 152 (2014), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1317.60077
[13] Debussche, A.; Glatt-Holtz, N. E.; Temam, R., Local martingale and pathwise solutions for an abstract fluids model, Phys. D: Nonlinear Phenom., 240, 14-15, 1123-1144 (2011) · Zbl 1230.60065
[14] Dong, H., Well-posedness for a transport equation with nonlocal velocity, J. Funct. Anal., 255, 11, 3070-3097 (2008) · Zbl 1170.35004
[15] Fedrizzi, E.; Flandoli, F., Noise prevents singularities in linear transport equations, J. Funct. Anal., 264, 6, 1329-1354 (2013) · Zbl 1273.60076
[16] Fedrizzi, E.; Neves, W.; Olivera, C., On a class of stochastic transport equations for \(L_{l o c}^2\) vector fields, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), XVIII, 397-419 (2018) · Zbl 1391.60157
[17] Flandoli, F., Random Perturbation of PDEs and Fluid Dynamic Models, Lecture Notes in Mathematics, vol. 2015 (2011), Springer: Springer Heidelberg, Lectures from the 40th Probability Summer School held in Saint-Flour, 2010, École d’Été de Probabilités de Saint-Flour [Saint-Flour Probability Summer School] · Zbl 1221.35004
[18] Flandoli, F.; Gubinelli, M.; Priola, E., Well-posedness of the transport equation by stochastic perturbation, Invent. Math., 180, 1, 1-53 (2010) · Zbl 1200.35226
[19] Flandoli, F.; Gubinelli, M.; Priola, E., Full well-posedness of point vortex dynamics corresponding to stochastic 2D Euler equations, Stoch. Process. Appl., 121, 7, 1445-1463 (2011) · Zbl 1221.60082
[20] Flandoli, F.; Luo, D., Euler-Lagrangian approach to 3-D stochastic Euler equations, J. Geom. Mech., 11, 2, 153-165 (2019) · Zbl 1435.35290
[21] Gawarecki, L.; Mandrekar, V., Stochastic Differential Equations in Infinite Dimensions with Applications to Stochastic Partial Differential Equations, Probability and Its Applications (New York) (2011), Springer: Springer Heidelberg · Zbl 1228.60002
[22] Gess, B.; Souganidis, P. E., Long-time behavior, invariant measures, and regularizing effects for stochastic scalar conservation laws, Commun. Pure Appl. Math., 70, 8, 1562-1597 (2017) · Zbl 1370.60105
[23] Glatt-Holtz, N.; Ziane, M., Strong pathwise solutions of the stochastic Navier-Stokes system, Adv. Differ. Equ., 14, 5-6, 567-600 (2009) · Zbl 1195.60090
[24] Glatt-Holtz, N. E.; Vicol, V. C., Local and global existence of smooth solutions for the stochastic Euler equations with multiplicative noise, Ann. Probab., 42, 1, 80-145 (2014) · Zbl 1304.35545
[25] Held, A. I.; Pierrehumbert, R. T.; Garner, S. T.; Swanson, K. L., Surface quasi-geostrophic dynamics, J. Fluid Mech., 282, 1-20 (1995) · Zbl 0832.76012
[26] Henry, D., Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840 (1981) · Zbl 0456.35001
[27] Himonas, A. A.; Kenig, C., Non-uniform dependence on initial data for the CH equation on the line, Differ. Integral Equ., 22, 3-4, 201-224 (2009) · Zbl 1240.35242
[28] Himonas, A. A.; Kenig, C.; Misiołek, G., Non-uniform dependence for the periodic CH equation, Commun. Partial Differ. Equ., 35, 6, 1145-1162 (2010) · Zbl 1193.35189
[29] Himonas, A. A.; Misiołek, G., Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Commun. Math. Phys., 296, 1, 285-301 (2010) · Zbl 1195.35247
[30] Hofmanová, M., Degenerate parabolic stochastic partial differential equations, Stoch. Process. Appl., 123, 12, 4294-4336 (2013) · Zbl 1291.60130
[31] Holm, D. D., Variational principles for stochastic fluid dynamics, Proc. R. Soc. A, 471, 2176, Article 20140963 pp. (2015), 19 · Zbl 1371.35219
[32] Inci, H., On the well-posedness of the inviscid SQG equation, J. Differ. Equ., 264, 4, 2660-2683 (2018) · Zbl 1380.35053
[33] Kallianpur, G.; Xiong, J., Stochastic Differential Equations in Infinite-Dimensional Spaces, vol. 26 (1995), vi+342 pp. Expanded version of the lectures delivered as part of the 1993 Barrett Lectures at the University of Tennessee, Knoxville, TN, March 25-27, 1993, with a foreword by Balram S. Rajput and Jan Rosinski · Zbl 0845.60008
[34] Kato, T.; Ponce, G., Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., 41, 7, 891-907 (1988) · Zbl 0671.35066
[35] Kenig, C. E.; Ponce, G.; Vega, L., Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., 4, 2, 323-347 (1991) · Zbl 0737.35102
[36] Khas’minskiĭ, R. Z., Stability of Systems of Differential Equations Under Random Perturbations of Their Parameters (1969), Izdat. “Nauka”: Izdat. “Nauka” Moscow, (in Russian) · Zbl 0214.15903
[37] Kim, J. U., On the Cauchy problem for the transport equation with random noise, J. Funct. Anal., 259, 12, 3328-3359 (2010) · Zbl 1203.35293
[38] Kiselev, A., Regularity and blow up for active scalars, Math. Model. Nat. Phenom., 5, 4, 225-255 (2010) · Zbl 1194.35490
[39] Koch, H.; Tzvetkov, N., Non-linear wave interactions for the Benjamin-Ono equation, Int. Math. Res. Not., 30, 1833-1847 (2005) · Zbl 1156.35460
[40] Kröker, I.; Rohde, C., Finite volume schemes for hyperbolic balance laws with multiplicative noise, Appl. Numer. Math., 62, 4, 441-456 (2012) · Zbl 1241.65013
[41] Krylov, N. V.; Rozovskiĭ, B. L., Stochastic evolution equations, (Current Problems in Mathematics, vol. 14 (1979), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii: Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii Moscow), 71-147, 256 (in Russian)
[42] Li, J.; Liu, H.; Tang, H., Stochastic MHD equations with fractional kinematic dissipation and partial magnetic diffusion in \(\mathbb{R}^2\), Stoch. Process. Appl., 135, 139-182 (2021) · Zbl 1464.35238
[43] Li, D.; Rodrigo, J., Blow-up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation, Adv. Math., 217, 6, 2563-2568 (2008) · Zbl 1138.35381
[44] Miao, Y.; Rohde, C.; Tang, H., Well-posedness for a stochastic Camassa-Holm type equation with higher order non-linearities (2021)
[45] Morlet, A. C., Further properties of a continuum of model equations with globally defined flux, J. Math. Anal. Appl., 221, 1, 132-160 (1998) · Zbl 0916.35049
[46] Neves, W.; Olivera, C., Wellposedness for stochastic continuity equations with Ladyzhenskaya-Prodi-Serrin condition, NoDEA Nonlinear Differ. Equ. Appl., 22, 1247-1258 (2015) · Zbl 1325.60111
[47] Pedlosky, P., Geophysical Fluid Dynamics (1982), Springer Verlag
[48] Prévôt, C.; Röckner, M., A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Mathematics, vol. 1905 (2007), Springer: Springer Berlin · Zbl 1123.60001
[49] Ren, P.; Tang, H.; Wang, F.-Y., Distribution-path dependent non-linear SPDEs with application to stochastic transport type equations (2020)
[50] Röckner, M.; Zhu, R.; Zhu, X., Local existence and non-explosion of solutions for stochastic fractional partial differential equations driven by multiplicative noise, Stoch. Process. Appl., 124, 5, 1974-2002 (2014) · Zbl 1329.60220
[51] Rohde, C.; Tang, H., On the stochastic Dullin-Gottwald-Holm equation: global existence and wave-breaking phenomena, NoDEA Nonlinear Differ. Equ. Appl., 28, 1, Article 5 pp. (2021), 34 · Zbl 1456.60161
[52] Rohde, C.; Tang, H., On a stochastic Camassa-Holm type equation with higher order non-linearities, J. Dyn. Differ. Equ., 33, 1823-1852 (2021) · Zbl 1477.60101
[53] Silvestre, L.; Vicol, V., On a transport equation with nonlocal drift, Trans. Am. Math. Soc., 368, 9, 6159-6188 (2016) · Zbl 1334.35254
[54] Tang, H., On the pathwise solutions to the Camassa-Holm equation with multiplicative noise, SIAM J. Math. Anal., 50, 1, 1322-1366 (2018) · Zbl 1387.35537
[55] Tang, H., Noise effects on dependence on initial data and blow-up for stochastic Euler-Poincaré equations (2020)
[56] Tang, H.; Shi, S.; Liu, Z., The dependences on initial data for the b-family equation in critical Besov space, Monatshefte Math., 177, 3, 471-492 (2015) · Zbl 1319.35227
[57] Tang, H.; Zhao, Y.; Liu, Z., A note on the solution map for the periodic Camassa-Holm equation, Appl. Anal., 93, 8, 1745-1760 (2014) · Zbl 1310.35078
[58] Taylor, M. E., Partial Differential Equations III, Applied Mathematical Sciences., vol. 117 (2011), Springer New York: Springer New York New York, NY · Zbl 1206.35004
[59] Temam, R., Navier-Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and Its Applications, vol. 2 (1977), North-Holland Publishing Co.: North-Holland Publishing Co. Amsterdam-New York-Oxford · Zbl 0383.35057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.