×

Geometric control of two quadrotors carrying a rigid rod with elastic cables. (English) Zbl 1497.93151

Summary: This paper presents the design of a geometric trajectory tracking controller for an underactuated multi-body system describing the cooperative task of two quadrotor UAVs (unmanned aerial vehicles) carrying and transporting a rigid bar, which is attached to the quadrotors via inflexible elastic cables. The elasticity of the cables together with techniques of singular perturbation allows a reduction in the model to that of a similar model with inelastic cables. In this reduced model, we design a controller such that the rod exponentially tracks a given desired trajectory for its position and attitude, under some assumptions on initial error. We then show that exponential tracking in the reduced model corresponds to exponential tracking of the original elastic model. We also show that the previously defined control scheme provides uniform ultimate boundedness in the presence of unstructured bounded disturbances.

MSC:

93C85 Automated systems (robots, etc.) in control theory
93B27 Geometric methods
93C10 Nonlinear systems in control theory
93C73 Perturbations in control/observation systems

References:

[1] Agrawal, V., Peine, W., Yao, B.: Modeling of a closed loop cable-conduit transmission system. In: 2008 IEEE International Conference on Robotics and Automation, pp. 3407-3412. IEEE (2018)
[2] Bloch, AM, Nonholonomic Mechanics and Control (2015), Berlin: Springer, Berlin · Zbl 1381.70004 · doi:10.1007/978-1-4939-3017-3
[3] Bloch, A., Camarinha, M., Colombo, L.: Variational obstacle avoidance on Riemannian manifolds. In: Proceedings of the IEEE International Conference on Decision and Control, pp. 146-150 (2017) · Zbl 1464.93017
[4] Bloch, A.; Camarinha, M.; Colombo, LJ, Dynamic interpolation for obstacle avoidance on Riemannian manifolds, Int. J. Control. (2019) · Zbl 1480.93302 · doi:10.1080/00207179.2019.1603400
[5] Cartmell, M.; McKenzie, DJ, A review of space tether research, Prog. Aerosp. Sci., 44, 1, 1-21 (2008) · doi:10.1016/j.paerosci.2007.08.002
[6] Chaturvedi, NA; Sanyal, AK; McClamroch, NH, Rigid-body attitude control, IEEE Control Syst. Mag., 31, 3, 30-51 (2011) · Zbl 1395.70027 · doi:10.1109/MCS.2011.940459
[7] Colombo, L.; Jimenez, F.; De Diego, D., Variational integrators for mechanical control systems with symmetries, J. Comput. Dyn., 2, 2, 193-225 (2015) · Zbl 1397.70024 · doi:10.3934/jcd.2015003
[8] Colombo, L.; Ferraro, S.; Martn de Diego, D., Geometric integrators for higherorder variational systems and their application to optimal control, J. Nonlinear Sci., 26, 6, 1615-1650 (2016) · Zbl 1378.70016 · doi:10.1007/s00332-016-9314-9
[9] Gassner, M., Cieslewski, T., Scaramuzza, D.: Dynamic collaboration without communication: vision-based cable-suspended load transport with two quadrotors. In: IEEE International Conference on Robotics and Automation, pp. 5196-5202 (2017)
[10] Gelfand, I.M., Fomin, S.V.: Calculus of variations. Revised English edition translated and edited by Richard A. Silverman. Prentice-Hall, Inc., Englewood Cliffs, N.J., pp. vii+232 (1963) · Zbl 0127.05402
[11] Goodarzi, F.A., Lee, T.: Dynamics and control of quadrotor UAVs transporting a rigid body connected via flexible cables. In: 2015 American Control Conference, pp. 4677-4682 (2015)
[12] Holm, DD; Schmah, T.; Stoica, C., Geometric Mechanics and Symmetry (2009), Oxford: Oxford University Press, Oxford · Zbl 1175.70001
[13] Holmes, M., Introduction to Perturbation Methods (2012), Berlin: Springer, Berlin
[14] Izadi, M.; Sanyal, AK, Rigid body pose estimation based on the Lagrange-d’Alembert principle, Automatica, 71, 78-88 (2016) · Zbl 1343.93082 · doi:10.1016/j.automatica.2016.04.028
[15] Joshi, S., Rahn, C.D.: Position control of a flexible cable gantry crane: theory and experiment. In: Proceedings of the American Control Conference, vol. 4, pp. 2820-2824 (1995)
[16] Khalil, HK, Nonlinear Systems (2002), Englewood Cliffs: Prentice-Hall, Inc., Englewood Cliffs · Zbl 1003.34002
[17] Khalil, HK, Nonlinear Control (2015), London: Pearson Education Limited, London
[18] Kobilarov, M.: Trajectory tracking of a class of underactuated systems with external disturbances. In: 2013 American Control Conference, pp. 1044-1049. IEEE (2013)
[19] Kobilarov, M., Nonlinear trajectory control of multi-body aerial manipulators, J. Intell. Robot. Syst., 73, 1, 679-692 (2014) · doi:10.1007/s10846-013-9934-3
[20] Kotaru, P., Wu, G., Sreenath, K.: Dynamics and control of a quadrotor with a payload suspended through an elastic cable. In: 2017 American Control Conference (ACC), pp. 3906-3913 (2017)
[21] Lee, T.: Geometric control of multiple quadrotor UAVs transporting a cable-suspended rigid body. In: Proceedings of 53rd IEEE Conference on Decision Control, Dec., pp. 6155-6160 (2014)
[22] Lee, T., Global exponential attitude tracking controls on \(SO(3)\), IEEE Trans. Autom. Control, 60, 10, 2837-2842 (2015) · Zbl 1360.70040 · doi:10.1109/TAC.2015.2407452
[23] Lee, T., Geometric control of quadrotor UAVs transporting a cable-suspended rigid body, IEEE Trans. Control Syst. Technol., 26, 1, 255-264 (2018) · doi:10.1109/TCST.2017.2656060
[24] Lee, T., Leok, M., McClamroch, N.: Geometric tracking control of a quadrotor UAV on SE(3). In: Proceedings of 49th IEEE Conference on Decision Control, Dec., pp. 5420-5425 (2010)
[25] Lee, T., Sreenath, K., Kumar, V.: Geometric control of cooperating multiple quadrotor UAVs with a suspended load. In: Proceedings of the IEEE Conference on Decision and Control, pp. 5510-5515 (2013)
[26] Maithripala, DHS; Berg, J.; Dayawansa, W., Almost-global tracking of simple mechanical systems on a general class of lie groups, IEEE Trans. Autom. Control, 51, 2, 216-225 (2006) · Zbl 1366.93406 · doi:10.1109/TAC.2005.862219
[27] Marsden, JE; Ratiu, TS, Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems (1999), New York: Springer, New York · Zbl 0933.70003 · doi:10.1007/978-0-387-21792-5
[28] Maza, I.; Kondak, K.; Bernard, M.; Ollero, A., Multi-UAV cooperation and control for load transportation and deployment, J. Intell. Robot. Syst., 57, 417-449 (2010) · Zbl 1203.93147 · doi:10.1007/s10846-009-9352-8
[29] Mellinger, D., Kumar, V.: Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE International Conference on Robotics and Automation, pp. 2520-2525. IEEE (2011)
[30] Michael, N.; Fink, J.; Kumar, V., Cooperative manipulation and transportation with aerial robots, Auton. Robots, 30, 73-86 (2011) · doi:10.1007/s10514-010-9205-0
[31] Palunko, I.; Cruz, P.; Fierro, R., Agile load transportation, IEEE Robot. Autom. Mag., 19, 3, 69-79 (2012) · doi:10.1109/MRA.2012.2205617
[32] Pereira, P.; Dimarogonas, DV, Pose and position trajectory tracking for aerial transportation of a rod-like object, Automatica, 109, 108547 (2019) · Zbl 1429.93251 · doi:10.1016/j.automatica.2019.108547
[33] Pereira, P.; Dimarogonas, DV, Pose stabilization of a bar tethered to two aerial vehicles, Automatica, 112, 108695 (2020) · Zbl 1430.93149 · doi:10.1016/j.automatica.2019.108695
[34] Sanyal, J.; Shen, AK; Bloch, AM; McClamroch, NH, Stability and stabilization of relative equilibria of dumbbell bodies in central gravity, AIAA J. Guid. Control Dyn., 28, 5, 833-842 (2005) · doi:10.2514/1.10546
[35] Sanyal, A.; Nordkvist, N.; Chyba, M., An almost global tracking control scheme for maneuverable autonomous vehicles and its discretization, IEEE Trans. Autom. Control, 56, 2, 457-462 (2011) · Zbl 1368.93435 · doi:10.1109/TAC.2010.2090190
[36] Sreenath, K., Lee, T., Kumar, V.: Geometric control and differential flatness of a quadrotor UAV with a cable-suspended load. In: IEEE Conference on Decision and Control, pp. 2269-2274 (2013)
[37] Thapa, S.; Bai, H.; Acosta, J., Cooperative aerial manipulation with decentralized adaptive force-consensus control, J. Intell. Robot. Syst., 97, 1, 171-183 (2020) · doi:10.1007/s10846-019-01048-4
[38] Wu, G., Sreenath, K.: Geometric control of quadrotors transporting a rigid-body load. In: IEEE Conference on Decision and Control, Los Angeles, CA, pp. 6141-6148 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.