×

Vortex pairs and dipoles on closed surfaces. (English) Zbl 1494.76023

Summary: We set up general equations of motion for point vortex systems on closed Riemannian surfaces, allowing for the case that the sum of vorticities is not zero and there hence must be counter-vorticity present. The dynamics of global circulations which is coupled to the dynamics of the vortices is carefully taken into account. Much emphasis is put to the study of vortex pairs, having the Kimura conjecture in focus. This says that vortex pairs move, in the dipole limit, along geodesic curves, and proofs for it have previously been given by S. Boatto and J. Koiller [Fields Inst. Commun. 73, 185–237 (2015; Zbl 1402.76034)] by using Gaussian geodesic coordinates. In the present paper, we reach the same conclusion by following a slightly different route, leading directly to the geodesic equation with a reparametrized time variable. In a final section, we explain how vortex motion in planar domains can be seen as a special case of vortex motion on closed surfaces.

MSC:

76B47 Vortex flows for incompressible inviscid fluids
76M40 Complex variables methods applied to problems in fluid mechanics
30F99 Riemann surfaces
53Z05 Applications of differential geometry to physics

Citations:

Zbl 1402.76034

References:

[1] Arnold, VI; Khesin, BA, Topological Methods in Hydrodynamics. Applied Mathematical Sciences (1998), New York: Springer-Verlag, New York · Zbl 0902.76001 · doi:10.1007/b97593
[2] Boatto, S.; Koiller, J.; Chang, DE; Holm, DD; Patrick, G.; Ratiu, T., Vortices on closed surfaces, Geometry, Mechanics, and Dynamics: The legacy of Jerry Marsden, 185-237 (2015), New York: Springer, New York · Zbl 1402.76034 · doi:10.1007/978-1-4939-2441-7_10
[3] Bogatskiy, A., Vortex flows on closed surfaces, J. Phys. A, 52, 475501 (2019) · Zbl 1509.76016 · doi:10.1088/1751-8121/ab4e6a
[4] Borisov, AV; Mamaev, IS, On the problem of motion of vortex sources on a plane, Regul. Chaotic Dyn., 11, 455-466 (2006) · Zbl 1164.37353 · doi:10.1070/RD2006v011n04ABEH000363
[5] Cawte, M.M., Yu, X., Anderson, B.P., Bradley, A.S.: Snell’s law for a vortex dipole in a Bose-Einstein condensate. SciPost Phys. 6, Paper No. 032, 18 (2019)
[6] Chorin, AJ, Numerical study of slightly viscous flow, J. Fluid Mech., 57, 785-796 (1973) · doi:10.1017/S0022112073002016
[7] Cohn, H.: Conformal mapping on Riemann surfaces, Dover Publications, Inc., New York, (1980). Reprint of the 1967 edition, Dover Books on Advanced Mathematics · Zbl 0493.30001
[8] Davis, P.J.: The Schwarz function and its applications. The Mathematical Association of America, Buffalo (1974). The Carus Mathematical Monographs, No. 17 · Zbl 0293.30001
[9] Dritschel, DG; Boatto, S., The motion of point vortices on closed surfaces, Proc. A, 471, 20140890 (2015) · Zbl 1371.76042
[10] Farkas, HM; Kra, I., Riemann Surfaces. Graduate Texts in Mathematics (1992), New York: Springer-Verlag, New York · Zbl 0764.30001 · doi:10.1007/978-1-4612-2034-3
[11] Flucher, M., Variational Problems with Concentration. Progress in Nonlinear Differential Equations and Their Applications (1999), Basel: Birkhäuser Verlag, Basel · Zbl 0940.35006
[12] Flucher, M., Gustafsson, B.: Vortex motion in two-dimensional hydrodynamics, Royal Institute of Technology Research Bulletins, TRITA-MAT-1997-MA-02 (1979), pp. 1-24
[13] Frankel, T., The Geometry of Physics. An introduction (2012), Cambridge: Cambridge University Press, Cambridge · Zbl 0888.58077
[14] Fridman, A., Polubarinova, P.: On moving singularities of a flat motion of an incompressible fluid. Geofizicheskii Sbornik 9-23 (1928) (in Russian)
[15] Griffiths, P.; Harris, J., Principles of Algebraic Geometry. Pure and Applied Mathematics (1978), New York: Wiley-Interscience, New York · Zbl 0408.14001
[16] Grotta Ragazzo, C., The motion of a vortex on a closed surface of constant negative curvature, Proc. A., 473, 20170447 (2017) · Zbl 1404.76061
[17] Grotta Ragazzo, C.; Viglioni, HHDB, Hydrodynamic vortex on surfaces, J. Nonlinear Sci., 27, 1609-1640 (2017) · Zbl 1386.70034 · doi:10.1007/s00332-017-9380-7
[18] Guillemin, V.; Sternberg, S., Symplectic Techniques in Physics (1984), Cambridge: Cambridge University Press, Cambridge · Zbl 0576.58012
[19] Gunning, RC, Lectures on Riemann Surfaces (1966), Princeton: Princeton University Press, Princeton · Zbl 0175.36801
[20] Gunning, RC, Special coordinate coverings of Riemann surfaces, Math. Ann., 170, 67-86 (1967) · Zbl 0144.33501 · doi:10.1007/BF01362287
[21] Gunning, RC, On Uniformization of Complex Manifolds: The Role of Connections. Mathematical Notes (1978), Princeton: Princeton University Press, Princeton · Zbl 0392.32016
[22] Gustafsson, B., Vortex motion and geometric function theory: the role of connections, Philos. Trans. R. Soc. A, 377, 20180341 (2019) · Zbl 1462.70010 · doi:10.1098/rsta.2018.0341
[23] Gustafsson, B.; Sebbar, A., Critical points of Green’s function and geometric function theory, Indiana Univ. Math. J., 61, 939-1017 (2012) · Zbl 1293.30025 · doi:10.1512/iumj.2012.61.4621
[24] Hally, D., Stability of streets of vortices on surfaces of revolution with a reflection symmetry, J. Math. Phys., 21, 211-217 (1980) · Zbl 0446.76027 · doi:10.1063/1.524322
[25] Holm, DD; Jacobs, HO, Multipole vortex blobs (MVB): symplectic geometry and dynamics, J. Nonlinear Sci., 27, 973-1006 (2017) · Zbl 1365.76212 · doi:10.1007/s00332-017-9367-4
[26] Kimura, Y., Vortex motion on surfaces with constant curvature, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455, 245-259 (1999) · Zbl 0966.53046 · doi:10.1098/rspa.1999.0311
[27] Koebe, P.: Abhandlungen zur Theorie der konformen Abbildung, Acta Math. 41, 305-344 (1916). IV. Abbildung mehrfach zusammenhängender schlichter Bereiche auf Schlitzbereiche · JFM 46.0545.02
[28] Koiller, J., Getting into the vortex: on the contributions of James Montaldi, J. Geom. Mech., 12, 507-523 (2020) · Zbl 1452.76004
[29] Koiller, J.; Boatto, S., Vortex pairs on surfaces, AIP Conf. Proc., 1130, 77 (2009) · Zbl 1375.76029 · doi:10.1063/1.3146241
[30] Krishnamurthy, V.S., Wheeler, M.H., Crowdy, D.G., Constantin, A.: Liouville chains: new hybrid vortex equilibria of the two-dimensional Euler equation. J. Fluid Mech. 921, Paper No. A1, 35 (2021) · Zbl 1469.76027
[31] Kulik, KN; Tur, AV; Yanovskiĭ, VV, Interaction of point and dipole vortices in an incompressible fluid, Teoret. Mat. Fiz., 162, 459-480 (2010) · Zbl 1425.76049 · doi:10.4213/tmf6482
[32] Lin, C.C.: On the motion of vortices in two dimensions. I. Existence of the Kirchhoff-Routh function. Proc. Natl. Acad. Sci. U. S. A. 27, 570-575 (1941a) · Zbl 0063.03560
[33] Lin, C.C.: On the motion of vortices in two dimensions. II. Some further investigations on the Kirchhoff-Routh function. Proc. Natl. Acad. Sci. U. S. A. 27, 575-577 (1941b) · Zbl 0063.03560
[34] Lin, CC, On the Motion of Vortices in Two Dimensions, University of Toronto Studies, Applied Mathematics Series (1943), Toronto: University of Toronto Press, Toronto · Zbl 0063.03561
[35] Llewellyn Smith, SG, How do singularities move in potential flow?, Phys. D, 240, 1644-1651 (2011) · Zbl 1343.76007 · doi:10.1016/j.physd.2011.06.010
[36] Llewellyn Smith, SG; Nagem, RJ, Vortex pairs and dipoles, Regul. Chaotic Dyn., 18, 194-201 (2013) · Zbl 1273.76070 · doi:10.1134/S1560354713010140
[37] Marchioro, C.; Pulvirenti, M., Mathematical Theory of Incompressible Nonviscous Fluids. Applied Mathematical Sciences (1994), New York: Springer-Verlag, New York · Zbl 0789.76002
[38] Newton, PK, The \(N\)-Vortex Problem, Applied Mathematical Sciences, Analytical Techniques (2001), New York: Springer-Verlag, New York · Zbl 0981.76002
[39] Rodrigues, AR; Castilho, C.; Koiller, J., Vortex pairs on a triaxial ellipsoid and Kimura’s conjecture, J. Geom. Mech., 10, 189-208 (2018) · Zbl 1405.76008 · doi:10.3934/jgm.2018007
[40] Sario, L., Oikawa, K.: Capacity Functions, Die Grundlehren der mathematischen Wissenschaften, Band 149. Springer-Verlag New York Inc., New York (1969) · Zbl 0184.10503
[41] Schiffer, M.; Hawley, NS, Connections and conformal mapping, Acta Math., 107, 175-274 (1962) · Zbl 0115.29301 · doi:10.1007/BF02545790
[42] Schottky, F., Ueber die conforme Abbildung mehrfach zusammenhängender ebener Flächen, J. Reine Angew. Math., 83, 300-351 (1877) · JFM 09.0584.02
[43] Schutz, BF Jr, Geometrical Methods in Mathematical Physics (1980), Cambridge: Cambridge University Press, Cambridge · Zbl 0462.58001 · doi:10.1017/CBO9781139171540
[44] Shapiro, HS, The Schwarz Function and Its Generalization to Higher Dimensions, University of Arkansas Lecture Notes in the Mathematical Sciences (1992), New York: Wiley, New York · Zbl 0784.30036
[45] Wang, Q., The \(n\)-vortex problem on a Riemann sphere, Commun. Math. Phys., 385, 565-593 (2021) · Zbl 1477.70022 · doi:10.1007/s00220-021-04044-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.