×

Morrey’s conjecture for the planar volumetric-isochoric split: least rank-one convex energy functions. (English) Zbl 1497.74004

Summary: We consider Morrey’s open question whether rank-one convexity already implies quasiconvexity in the planar case. For some specific families of energies, there are precise conditions known under which rank-one convexity even implies polyconvexity. We will extend some of these findings to the more general family of energies \(W:\mathrm{GL}^+ (n)\rightarrow \mathbb{R}\) with an additive volumetric-isochoric split, i.e. \[ W(F)=W_{\mathrm{iso}}(F)+W_{\mathrm{vol}}(\det F)= \widetilde{W}_{\mathrm{iso}} \left(\frac{F}{\sqrt{\det F}}\right) +W_{\mathrm{vol}} (\det F)\,, \] which is the natural finite extension of isotropic linear elasticity. Our approach is based on a condition for rank-one convexity which was recently derived from the classical two-dimensional criterion by Knowles and Sternberg and consists of a family of one-dimensional coupled differential inequalities. We identify a number of “least” rank-one convex energies and, in particular, show that for planar volumetric-isochorically split energies with a concave volumetric part, the question of whether rank-one convexity implies quasiconvexity can be reduced to the open question of whether the rank-one convex energy function \[ W_{\mathrm{magic}}^+ (F)=\frac{\lambda_{\max}}{\lambda_{\min}} -\log \frac{\lambda_{\max}}{\lambda_{\min}}+\log \det\, F=\frac{\lambda_{\max}}{\lambda_{\min}}+2\log \lambda_{\min} \] is quasiconvex. In addition, we demonstrate that under affine boundary conditions, \(W_{\mathrm{magic}}^+ (F)\) allows for non-trivial inhomogeneous deformations with the same energy level as the homogeneous solution, and show a surprising connection to the work of D. L. Burkholder [Astérisque 157–158, 75–94 (1988; Zbl 0656.60055)] and T. Iwaniec [Banach Cent. Publ. 48, 119–140 (1999; Zbl 0942.46016)] in the field of complex analysis.

MSC:

74B20 Nonlinear elasticity
35Q74 PDEs in connection with mechanics of deformable solids

References:

[1] Astala, K.; Iwaniec, T.; Martin, G., Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (2008), Princeton: Princeton University Press, Princeton · Zbl 1182.30001 · doi:10.1515/9781400830114
[2] Astala, K.; Iwaniec, T.; Prause, I.; Saksman, E., Burkholder integrals, Morrey’s problem and quasiconformal mappings, J. Am. Math. Soc., 25, 2, 507-531 (2012) · Zbl 1276.30038 · doi:10.1090/S0894-0347-2011-00718-2
[3] Astala, K.; Iwaniec, T.; Prause, I.; Saksman, E., A hunt for sharp Lp-estimates and rank-one convex variational integrals, Filomat, 29, 2, 245-261 (2015) · Zbl 1474.30151 · doi:10.2298/FIL1502245A
[4] Aubert, G., Necessary and sufficient conditions for isotropic rank-one convex functions in dimension 2, J. Elast., 39, 1, 31-46 (1995) · Zbl 0828.73015 · doi:10.1007/BF00042440
[5] Aubert, G.; Tahraoui, R., Sur la faible fermeture de certains ensembles de contraintes en elasticite non-lineaire plane, Arch. Ration. Mech. Anal., 97, 1, 33-58 (1987) · Zbl 0619.73014 · doi:10.1007/BF00279845
[6] Baernstein, A., Montgomery-Smith, S.: Some Conjectures About Integral Means of \(\partial\) f and \(\bar{\partial }\) f ”. Mathematics Publications (MU) (2011). arXiv:math/9709215 · Zbl 0966.30001
[7] Ball, JM, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 4, 337-403 (1976) · Zbl 0368.73040 · doi:10.1007/BF00279992
[8] Ball, JM; Knops, RJ, Constitutive inequalities and existence theorems in nonlinear elastostatics, Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, 187-241 (1977), Boston: Pitman Publishing Ltd., Boston · Zbl 0377.73043
[9] Ball, JM; Antman, SS; Ericksen, J.; Kinderlehrer, D.; Müller, I., Does rank-one convexity imply quasiconvexity?, Metastability and Incompletely Posed Problems, 17-32 (1987), Berlin: Springer, Berlin · Zbl 0613.49014 · doi:10.1007/978-1-4613-8704-6_2
[10] Ball, JM; Newton, P.; Holmes, P.; Weinstein, A., Some open problems in elasticity, Geometry, Mechanics, and Dynamics, 3-59 (2002), Berlin: Springer, Berlin · Zbl 1054.74008 · doi:10.1007/0-387-21791-6_1
[11] Ball, JM; Murat, F., \(W^{1, p}\)-quasiconvexity and variational problems for multiple integrals, J. Funct. Anal., 58, 3, 225-253 (1984) · Zbl 0549.46019 · doi:10.1016/0022-1236(84)90041-7
[12] Banuelos, R., The foundational inequalities of DL Burkholder and some of their ramifications, Ill. J. Math., 54, 3, 789-868 (2010) · Zbl 1259.60047
[13] Bañuelos, R.; Lindeman, A. II, A martingale study of the Beurling-Ahlfors transform in \(\mathbb{R}^n \), J. Funct. Anal., 145, 1, 224-265 (1997) · Zbl 0876.60026 · doi:10.1006/jfan.1996.3022
[14] Brock, F.; Ferone, V.; Kawohl, B., A symmetry problem in the calculus of variations, Calc. Var. Partial. Differ. Equ., 4, 6, 593-599 (1996) · Zbl 0856.49018 · doi:10.1007/BF01261764
[15] Burkholder, DL, Sharp inequalities for martingales and stochastic integrals, Astérisque, 157, 158, 75-94 (1988) · Zbl 0656.60055
[16] Charrier, P.; Dacorogna, B.; Hanouzet, B.; Laborde, P., An existence theorem for slightly compressible materials in nonlinear elasticity, SIAM J. Math. Anal., 19, 1, 70-85 (1988) · Zbl 0668.73015 · doi:10.1137/0519005
[17] Ciarlet, PG, Mathematical Elasticity. Volume I: Three-Dimensional Elasticity (1988), Amsterdam: Elsevier, Amsterdam · Zbl 0648.73014
[18] Dacorogna, B., Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension, Discrete Contin. Dynam. Syst., 1, 2, 257-263 (2001) · Zbl 1055.35045 · doi:10.3934/dcdsb.2001.1.257
[19] Dacorogna, B., Direct Methods in the Calculus of Variations (2008), Berlin: Springer, Berlin · Zbl 1140.49001
[20] Dantas, MJH, Equivalence between rank-one convexity and polyconvexity for some classes of elastic materials, J. Elast., 82, 1, 1 (2006) · Zbl 1090.74009 · doi:10.1007/s10659-005-9021-5
[21] Davis, B.; Song, R., Donald Burkholder’s Work in Martingales and Analysis, 1-22 (2011), Berliin: Springer, Berliin
[22] Faraco, D.; Székelyhidi, L., Tartar’s conjecture and localization of the quasiconvex hullin \(\mathbb{R}^{2 \times 2} \), Acta Math., 200, 2, 279-305 (2008) · Zbl 1357.49054 · doi:10.1007/s11511-008-0028-1
[23] Favrie, N.; Gavrilyuk, S.; Ndanou, S., A thermodynamically compatible splitting procedure in hyperelasticity, J. Comput. Phys., 270, 300-324 (2014) · Zbl 1349.74344 · doi:10.1016/j.jcp.2014.03.051
[24] Federico, S., Volumetric-distortional decomposition of deformation and elasticity tensor, Math. Mech. Solids, 15, 6, 672-690 (2010) · Zbl 1257.74018 · doi:10.1177/1081286509105591
[25] Fenchel, W.; Blackett, DW, Convex Cones, Sets, and Functions (1953), Princeton: Princeton University, Princeton · Zbl 0053.12203
[26] Gavrilyuk, S.; Ndanou, S.; Hank, S., An example of a one-parameter family of rank-one convex stored energies for isotropic compressible solids, J. Elast., 124, 1, 133-141 (2016) · Zbl 1337.35146 · doi:10.1007/s10659-015-9559-9
[27] Ghiba, I.-D., Neff, P., Martin, R.J.: An ellipticity domain for the distortional Hencky logarithmic strain energy. Proc. R. Soc. Lond. A Math. Phys. Sci. 471, 2184 (2015a). doi:10.1098/rspa.2015.0510 · Zbl 1371.74042
[28] Ghiba, I.-D., Neff, P., Šilhavý, M.: The exponentiated Hencky-logarithmic strain energy Improvement of planar polyconvexity. Int. J. Non-Linear Mech. 71, 48-51 (2015b). doi:10.1016/j.ijnonlinmec.2015.01.009
[29] Ghiba, I-D; Martin, RJ; Neff, P., Rank-one convexity implies polyconvexity in isotropic planar incompressible elasticity, J. Math. Pures Appl., 116, 88-104 (2018) · Zbl 1426.74047 · doi:10.1016/j.matpur.2018.06.009
[30] Grabovsky, Y.; Truskinovsky, L., When rank-one convexity meets polyconvexity: an algebraic approach to elastic binodal, J. Nonlinear Sci., 29, 1, 229-253 (2019) · Zbl 1411.74012 · doi:10.1007/s00332-018-9485-7
[31] Hamburger, C., A characterization for rank-one-convexity in two dimensions, Ricerche Mat., 36, 171-181 (1987) · Zbl 0672.49016
[32] Harris, TL; Kirchheim, B.; Lin, C-C, Two-by-two upper triangular matrices and Morrey’s conjecture, Calc. Var. Partial. Differ. Equ., 57, 1-12 (2018) · Zbl 1401.49015 · doi:10.1007/s00526-018-1360-8
[33] Hartmann, S.; Neff, P., Polyconvexity of generalized polynomial-type hyperelastic strain energy functions for near-incompressibility, Int. J. Solids Struct., 40, 11, 2767-2791 (2003) · Zbl 1051.74539 · doi:10.1016/S0020-7683(03)00086-6
[34] Hencky, H., Über die Form des Elastizitatsgesetzes bei ideal elastischen Stoffen, Z. Tech. Phys., 9, 215-220 (1928) · JFM 54.0851.03
[35] Iwaniec, T., Extremal inequalities in Sobolev spaces and quasiconformal mappings, Z. Anal. Anwendungen, 1, 6, 1-16 (1982) · Zbl 0577.46038 · doi:10.4171/ZAA/37
[36] Iwaniec, T., Nonlinear analysis and quasiconformal mappings from the perspective of PDEs, Banach Center Publ., 48, 1, 119-140 (1999) · Zbl 0942.46016 · doi:10.4064/-48-1-119-140
[37] Iwaniec, T., Nonlinear Cauchy-Riemann operators in \(\mathbb{R}^n \), Trans. Am. Math. Soc., 354, 5, 1961-1995 (2002) · Zbl 1113.35068 · doi:10.1090/S0002-9947-02-02914-8
[38] Iwaniec, T.; Martin, G., Quasiregular mappings in even dimensions, Acta Math., 170, 1, 29-81 (1993) · Zbl 0785.30008 · doi:10.1007/BF02392454
[39] Kawohl, B., Sweers, G.: On Quasiconvexity, Rank-One Convexity and Symmetry, vol. 14. Delft Progress Report, pp. 251-263 (1990) · Zbl 0722.49023
[40] Knowles, JK; Sternberg, E., On the failure of ellipticity of the equations for finite elastostatic plane strain, Arch. Ration. Mech. Anal., 63, 4, 321-336 (1976) · Zbl 0351.73061 · doi:10.1007/BF00279991
[41] Knowles, JK; Sternberg, E., On the failure of ellipticity and the emergence of discontinuous deformation gradients in plane finite elastostatics, J. Elast., 8, 4, 329-379 (1978) · Zbl 0422.73038 · doi:10.1007/BF00049187
[42] Martin, RJ; Ghiba, I-D; Neff, P., Rank-one convexity implies polyconvexity for isotropic, objective and isochoric elastic energies in the two-dimensional case, Proc. R. Soc. Edinb. A, 147A, 571-597 (2017) · Zbl 1369.74016 · doi:10.1017/S0308210516000275
[43] Martin, RJ; Ghiba, I-D; Neff, P., A polyconvex extension of the logarithmic Hencky strain energy, Anal. Appl., 17, 3, 349-361 (2019) · Zbl 1416.74018 · doi:10.1142/S0219530518500173
[44] Martin, R.J., Voss, J., Ghiba, I.-D., Neff, P.: Rank-one convexity vs. ellipticity for isotropic functions. submitted (2020). arXiv:2008.11631
[45] Merkle, M., Reciprocally convex functions, J. Math. Anal. Appl., 293, 1, 210-218 (2004) · Zbl 1043.26005 · doi:10.1016/j.jmaa.2003.12.021
[46] Mielke, A., Necessary and sufficient conditions for polyconvexity of isotropic functions, J. Convex Anal., 12, 2, 291 (2005) · Zbl 1098.49013
[47] Montella, G.; Govindjee, S.; Neff, P., The exponentiated Hencky strain energy in modeling tire derived material for moderately large deformations, J. Eng. Mater. Technol., 138, 3, 1-12 (2016) · doi:10.1115/1.4032749
[48] Morrey, CB, Quasi-convexity and the lower semicontinuity of multiple integrals, Pac. J. Math., 2, 1, 25-53 (1952) · Zbl 0046.10803 · doi:10.2140/pjm.1952.2.25
[49] Morrey, CB, Multiple Integrals in the Calculus of Variations (2009), Berlin: Springer, Berlin · Zbl 1213.49002
[50] Müller, S., Rank-one convexity implies quasiconvexity on diagonal matrices, Int. Math. Res. Not., 1999, 20, 1087-1095 (1999) · Zbl 1055.49506 · doi:10.1155/S1073792899000598
[51] Murphy, J.; Rogerson, G., Modelling slight compressibility for hyperelastic anisotropic materials, J. Elast., 131, 2, 171-181 (2018) · Zbl 1451.74050 · doi:10.1007/s10659-017-9650-5
[52] Ndanou, S.; Favrie, N.; Gavrilyuk, S., The piston problem in hyperelasticity with the stored energy in separable form, Math. Mech. Solids, 22, 1, 101-113 (2017) · Zbl 1371.74045 · doi:10.1177/1081286514566707
[53] Nedjar, B.; Baaser, H.; Martin, RJ; Neff, P., A finite element implementation of the isotropic exponentiated Hencky-logarithmic model and simulation of the eversion of elastic tubes, Comput. Mech., 62, 4, 635-654 (2018) · Zbl 1459.74179 · doi:10.1007/s00466-017-1518-9
[54] Neff, P.; Ghiba, I-D, The exponentiated Hencky-logarithmic strain energy. Part III: coupling with idealized isotropic finite strain plasticity, Continuum Mech. Thermodyn., 28, 1, 477-487 (2016) · Zbl 1348.74053 · doi:10.1007/s00161-015-0449-y
[55] Neff, P., Ghiba, I.-D., Lankeit, J.: The exponentiated Hencky-logarithmic strain energy. Part I: constitutive issues and rank-one convexity. J. Elast. 121(2), 143-234 (2015a). doi:10.1007/s10659-015-9524-7 · Zbl 1325.74028
[56] Neff, P., Lankeit, J., Ghiba, I.-D., Martin, R.J., Steigmann, D.J.: The exponentiated Hencky-logarithmic strain energy. Part II: coercivity, planar polyconvexity and existence of minimizers. Z. Angew. Math. Phys. 66(4), 1671-1693 (2015b). doi:10.1007/s00033-015-0495-0 · Zbl 1320.74022
[57] Neff, P.; Eidel, B.; Martin, RJ, Geometry of logarithmic strain measures in solid mechanics, Arch. Ration. Mech. Anal., 222, 2, 507-572 (2016) · Zbl 1348.74039 · doi:10.1007/s00205-016-1007-x
[58] Ogden, R., Nearly isochoric elastic deformations: application to rubberlike solids, J. Mech. Phys. Solids, 26, 1, 37-57 (1978) · Zbl 0377.73044 · doi:10.1016/0022-5096(78)90012-1
[59] Ogden, RW, Non-Linear Elastic Deformations (1983), Chichester: Ellis Horwood, Chichester
[60] Parry, G., On the planar rank-one convexity condition, Proc. R. Soc. Edinb. Sect. A Math., 125, 2, 247-264 (1995) · Zbl 0841.49008 · doi:10.1017/S030821050002802X
[61] Pedregal, P.; Šverák, V., A note on quasiconvexity and rank-one convexity for 2x2 matrices, J. Convex Anal., 5, 107-118 (1998) · Zbl 0918.49012
[62] Schroder, J.; von Hoegen, M.; Neff, P., The exponentiated Hencky energy: anisotropic extension and case studies, Comput. Mech., 61, 6, 657-685 (2018) · Zbl 1457.74028 · doi:10.1007/s00466-017-1466-4
[63] Sebestyén, G., Székelyhidi, Jr., L.: Laminates Supported on Cubes. arXiv:1504.06516 (2015) · Zbl 1380.49069
[64] Sendova, T.; Walton, JR, On strong ellipticity for isotropic hyperelastic materials based upon logarithmic strain, Int. J. Non-Linear Mech., 40, 2, 195-212 (2005) · Zbl 1349.74062 · doi:10.1016/j.ijnonlinmec.2004.05.004
[65] Shield, RT, Inverse deformation results in finite elasticity, Z. Angew. Math. Phys., 18, 4, 490-500 (1967) · Zbl 0146.46103 · doi:10.1007/BF01601719
[66] Silhavy, M., The Mechanics and Thermodynamics of Continuous Media (1997), Berlin: Springer, Berlin · Zbl 0870.73004 · doi:10.1007/978-3-662-03389-0
[67] Silhavy, M., On isotropic rank 1 convex functions, Proc. R. Soc. Edinb. Sect. A Math., 129, 5, 1081-1105 (1999) · Zbl 0945.26018 · doi:10.1017/S0308210500031085
[68] Šilhavý, M.; Sequeira, A., Convexity conditions for rotationally invariant functions in two dimensions, Applied Nonlinear Analysis, 513-530 (2002), Berlin: Springer, Berlin · Zbl 0959.26008 · doi:10.1007/0-306-47096-9_35
[69] Simo, JC, A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition, Comput. Methods Appl. Mech. Eng., 68, 1, 1-31 (1988) · Zbl 0644.73043 · doi:10.1016/0045-7825(88)90104-1
[70] Šverák, V.: New examples of quasiconvex functions. Arch. Ration. Mech. Anal. 119(4), 293-300 (1992a) · Zbl 0823.26009
[71] Šverák, V.: Rank-one convexity does not imply quasiconvexity. Proc. R. Soc. Edinb Sect. A Math. 120(1-2), 185-189 (1992b) · Zbl 0777.49015
[72] Voss, J., Martin, R.J., Sander, O., Kumar, S., Kochman, D.M., Neff, P.: Numerical approaches for investigating quasiconvexity in the context of Morrey’s conjecture . in preparation (2021a)
[73] Voss, J., Ghiba, I.-D., Martin, R.J., Neff, P.: Sharp rank-one convexity conditions in planar isotropic elasticity for the additive volumetric-isochoric split. J. Elast. 143(2), 301-335 (2021b) · Zbl 1465.74028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.