×

Orthogonal harmonic analysis of fractal measures. (English) Zbl 0893.28005

Summary: We show that certain iteration systems lead to fractal measures admitting an exact orthogonal harmonic analysis.

MSC:

28A75 Length, area, volume, other geometric measure theory
42B10 Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type
46L55 Noncommutative dynamical systems

References:

[1] G. Björck and B. Saffari, New classes of finite unimodular sequences with unimodular Fourier transforms. Circulant Hadamard matrices with complex entries, C. R. Acad. Sci. Paris, Série 1, 320 (1995), 319-324. CMP 95:09 · Zbl 0846.11016
[2] Jürgen Friedrich, On first order partial differential operators on bounded regions of the plane, Math. Nachr. 131 (1987), 33 – 47. · Zbl 0647.47053 · doi:10.1002/mana.19871310104
[3] Bent Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem, J. Functional Analysis 16 (1974), 101 – 121. · Zbl 0279.47014
[4] U. Haagerup, Orthogonal maximal Abelian *-subalgebras of the \(n\times n\) matrices and cyclic \(n\)-roots, preprint, 1995, 29 pp.
[5] A. Iosevich and S. Pedersen, Spectral and tiling properties of the unit cube, preprint, 1998. · Zbl 0926.52020
[6] Palle E. T. Jørgensen, Spectral theory of finite volume domains in \?\(^{n}\), Adv. in Math. 44 (1982), no. 2, 105 – 120. · Zbl 0488.22009 · doi:10.1016/0001-8708(82)90001-9
[7] Palle E. T. Jorgensen and Steen Pedersen, Spectral theory for Borel sets in \?\(^{n}\) of finite measure, J. Funct. Anal. 107 (1992), no. 1, 72 – 104. · Zbl 0774.42021 · doi:10.1016/0022-1236(92)90101-N
[8] Palle E. T. Jorgensen and Steen Pedersen, Harmonic analysis and fractal limit-measures induced by representations of a certain \?*-algebra, J. Funct. Anal. 125 (1994), no. 1, 90 – 110. · Zbl 0829.43022 · doi:10.1006/jfan.1994.1118
[9] P. E. T. Jorgensen and S. Pedersen, Harmonic analysis of fractal measures, Constr. Approx. 12 (1996), no. 1, 1 – 30. · Zbl 0855.28003 · doi:10.1007/s003659900001
[10] P. E. T. Jorgensen and S. Pedersen, Spectral pairs in Cartesian coordinates, J. Fourier Anal. Appl., to appear. · Zbl 1050.42016
[11] P. E. T. Jorgensen and S. Pedersen, Dense analytic subspaces in fractal \(L^2\)-spaces, J. Anal. Math., to appear.
[12] Jun Kigami and Michel L. Lapidus, Weyl’s problem for the spectral distribution of Laplacians on p.c.f. self-similar fractals, Comm. Math. Phys. 158 (1993), no. 1, 93 – 125. · Zbl 0806.35130
[13] Mihail N. Kolountzakis and Jeffrey C. Lagarias, Structure of tilings of the line by a function, Duke Math. J. 82 (1996), no. 3, 653 – 678. · Zbl 0854.58016 · doi:10.1215/S0012-7094-96-08227-7
[14] J. C. Lagarias, J. A. Reed, and Y. Wang, Orthonormal bases of exponentials for the \(n\)-cube, preprint, 1998.
[15] Steen Pedersen, Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), no. 2, 496 – 509. , https://doi.org/10.1006/jfan.1996.0139 Jeffrey C. Lagarias and Yang Wang, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), no. 1, 73 – 98. · Zbl 0898.47002 · doi:10.1006/jfan.1996.3008
[16] Steen Pedersen, Spectral theory of commuting selfadjoint partial differential operators, J. Funct. Anal. 73 (1987), no. 1, 122 – 134. · Zbl 0651.47038 · doi:10.1016/0022-1236(87)90061-9
[17] Steen Pedersen, Spectral sets whose spectrum is a lattice with a base, J. Funct. Anal. 141 (1996), no. 2, 496 – 509. , https://doi.org/10.1006/jfan.1996.0139 Jeffrey C. Lagarias and Yang Wang, Spectral sets and factorizations of finite abelian groups, J. Funct. Anal. 145 (1997), no. 1, 73 – 98. · Zbl 0898.47002 · doi:10.1006/jfan.1996.3008
[18] S. Pedersen, Fourier series and geometry, preprint, 1997.
[19] S. Pedersen and Y. Wang, Spectral sets, translation tiles and characteristic polynomials, preprint, 1997.
[20] Robert S. Strichartz, Self-similarity in harmonic analysis, J. Fourier Anal. Appl. 1 (1994), no. 1, 1 – 37. · Zbl 0851.42001 · doi:10.1007/s00041-001-4001-z
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.