×

A pressure-correction and bound-preserving discretization of the phase-field method for variable density two-phase flows. (English) Zbl 07524769

Summary: In this paper, we present an efficient numerical algorithm for solving the time-dependent Cahn-Hilliard-Navier-Stokes equations that model the flow of two phases with different densities. The pressure-correction step in the projection method consists of a Poisson problem with a modified right-hand side. Spatial discretization is based on discontinuous Galerkin methods with piecewise linear or piecewise quadratic polynomials. One important contribution of this work is the formulation of flux and slope limiting techniques that successfully eliminate the bulk shift, overshoot and undershoot in the order parameter. The bound-preserving property of the discrete order parameter is proved. Several numerical results demonstrate that the proposed numerical algorithm is effective and robust for modeling two-component immiscible flows in porous structures and digital rocks.

MSC:

76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

Trilinos; eLBM

References:

[1] Leclaire, S.; Parmigiani, A.; Malaspinas, O.; Chopard, B.; Latt, J., Generalized three-dimensional lattice Boltzmann color-gradient method for immiscible two-phase pore-scale imbibition and drainage in porous media, Phys. Rev. E, 95, 3, Article 033306 pp. (2017)
[2] Raeini, A. Q.; Yang, J.; Bondino, I.; Bultreys, T.; Blunt, M. J.; Bijeljic, B., Validating the generalized pore network model using micro-CT images of two-phase flow, Transp. Porous Media, 130, 2, 405-424 (2019)
[3] Kim, J., Phase-field models for multi-component fluid flows, Commun. Comput. Phys., 12, 3, 613-661 (2012) · Zbl 1373.76030
[4] Shen, J., Modeling and numerical approximation of two-phase incompressible flows by a phase-field approach, (Multiscale Modeling and Analysis for Materials Simulation (2012), World Scientific), 147-195
[5] Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 1049-1072 (2006) · Zbl 1344.76052
[6] Bao, K.; Shi, Y.; Sun, S.; Wang, X.-P., A finite element method for the numerical solution of the coupled Cahn-Hilliard and Navier-Stokes system for moving contact line problems, J. Comput. Phys., 231, 24, 8083-8099 (2012) · Zbl 1284.65131
[7] Diegel, A. E.; Wang, C.; Wang, X.; Wise, S. M., Convergence analysis and error estimates for a second order accurate finite element method for the Cahn-Hilliard-Navier-Stokes system, Numer. Math., 137, 3, 495-534 (2017) · Zbl 1523.65081
[8] Liu, C.; Riviere, B., A priori error analysis of a discontinuous Galerkin method for Cahn-Hilliard-Navier-Stokes equations, CSIAM Trans. Appl. Math., 1, 1, 104-141 (2020)
[9] Ding, H.; Spelt, P., Wetting condition in diffuse interface simulations of contact line motion, Phys. Rev. E, 75, Article 046708 pp. (2007)
[10] Abels, H.; Garcke, H.; Grün, G., Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities, Math. Models Methods Appl. Sci., 22, 03, Article 1150013 pp. (2012) · Zbl 1242.76342
[11] Aland, S.; Voigt, A., Benchmark computations of diffuse interface models for two-dimensional bubble dynamics, Int. J. Numer. Methods Fluids, 69, 3, 747-761 (2012)
[12] Shokrpour-Roudbari, M.; van Brummelen, E. H.; Verhoosel, C. V., A multiscale diffuse-interface model for two-phase flow in porous media, Comput. Fluids, 141, 212-222 (2016) · Zbl 1390.76355
[13] Van Brummelen, E.; Shokrpour-Roudbari, M.; Van Zwieten, G., Elasto-capillarity simulations based on the Navier-Stokes-Cahn-Hilliard equations, (Advances in Computational Fluid-Structure Interaction and Flow Simulation (2016)), 451-462 · Zbl 1356.74068
[14] Guermond, J.-L.; Minev, P.; Shen, J., An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., 195, 44-47, 6011-6045 (2006) · Zbl 1122.76072
[15] Liu, J.-G.; Shu, C.-W., A high-order discontinuous Galerkin method for 2D incompressible flows, J. Comput. Phys., 160, 577-596 (2000) · Zbl 0963.76069
[16] Shahbazi, K.; Fischer, P.; Ethier, C., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 391-407 (2007) · Zbl 1216.76034
[17] Botti, L.; Di Pietro, D. A., A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure, J. Comput. Phys., 230, 572-585 (2021) · Zbl 1283.76030
[18] Dong, S.; Shen, J., A time-stepping scheme involving constant coefficient matrices for phase-field simulations of two-phase incompressible flows with large density ratios, J. Comput. Phys., 231, 17, 5788-5804 (2012) · Zbl 1277.76118
[19] Dodd, M.; Ferrante, A., A fast pressure-correction method for incompressible two-fluid flows, J. Comput. Phys., 273, 416-434 (2014) · Zbl 1351.76161
[20] Lee, A.; Münch, A.; Süli, E., Sharp-interface limits of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Appl. Math., 76, 433-456 (2016) · Zbl 1343.35129
[21] Frank, F.; Liu, C.; Alpak, F. O.; Riviere, B., A finite volume/discontinuous Galerkin method for the advective Cahn-Hilliard equation with degenerate mobility on porous domains stemming from micro-CT imaging, Comput. Geosci., 22, 2, 543-563 (2018) · Zbl 1405.65104
[22] Frank, F.; Rupp, A.; Kuzmin, D., Bound-preserving flux limiting schemes for DG discretizations of conservation laws with applications to the Cahn-Hilliard equation, Comput. Methods Appl. Mech. Eng., 359, Article 112665 pp. (2019) · Zbl 1441.76059
[23] Kuzmin, D.; Möller, M., Algebraic flux correction. I. Scalar conservation laws, (Flux-Corrected Transport. Principles, Algorithms, and Applications. Scientific Computation (2005), Springer), 155-206 · Zbl 1094.76040
[24] Kuzmin, D., A vertex-based hierarchical slope limiter for p-adaptive discontinuous Galerkin methods, J. Comput. Appl. Math., 233, 12, 3077-3085 (2010) · Zbl 1252.76045
[25] Kuzmin, D., Slope limiting for discontinuous Galerkin approximations with a possibly non-orthogonal Taylor basis, Int. J. Numer. Methods Fluids, 71, 9, 1178-1190 (2013) · Zbl 1431.65173
[26] Liu, C.; Frank, F.; Thiele, C.; Alpak, F. O.; Berg, S.; Chapman, W.; Riviere, B., An efficient numerical algorithm for solving viscosity contrast Cahn-Hilliard-Navier-Stokes system in porous media, J. Comput. Phys., 400, Article 108948 pp. (2020) · Zbl 1453.76078
[27] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D: Nonlinear Phenom., 179, 3, 211-228 (2003) · Zbl 1092.76069
[28] Badalassi, V.; Ceniceros, H.; Banerjee, S., Computation of multiphase systems with phase field models, J. Comput. Phys., 190, 317-397 (2003) · Zbl 1076.76517
[29] Feng, X., Fully discrete finite element approximations of the Navier-Stokes-Cahn-Hilliard diffuse interface model for two-phase fluid flows, SIAM J. Numer. Anal., 44, 3, 1049-1072 (2006) · Zbl 1344.76052
[30] Frank, F.; Liu, C.; Scanziani, A.; Alpak, F. O.; Riviere, B., An energy-based equilibrium contact angle boundary condition on jagged surfaces for phase-field methods, J. Colloid Interface Sci., 523, 282-291 (2018)
[31] D.J. Eyre, An unconditionally stable one-step scheme for gradient systems, 1998, pp. 1-15, unpublished article.
[32] Girault, V.; Riviere, B.; Wheeler, M., A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems, Math. Comput., 74, 249, 53-84 (2005) · Zbl 1057.35029
[33] Riviere, B., Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations: Theory and Implementation, Frontiers in Applied Mathematics (2008), Society for Industrial and Applied Mathematics · Zbl 1153.65112
[34] Kuzmin, D.; Gorb, Y., A flux-corrected transport algorithm for handling the close-packing limit in dense suspensions, J. Comput. Appl. Math., 236, 18, 4944-4951 (2012) · Zbl 1426.76280
[35] Liu, C.; Frank, F.; Alpak, F. O.; Riviere, B., An interior penalty discontinuous Galerkin approach for 3D incompressible Navier-Stokes equation for permeability estimation of porous media, J. Comput. Phys., 396, 669-686 (2019) · Zbl 1452.76095
[36] Magaletti, F.; Picano, F.; Chinappi, M.; Marino, L.; Casciola, C. M., The sharp-interface limit of the Cahn-Hilliard/Navier-Stokes model for binary fluids, J. Fluid Mech., 714, 95 (2013) · Zbl 1284.76116
[37] Lake, L. W., Enhanced Oil Recovery (1989), Prentice-Hall: Prentice-Hall N.J.
[38] Hilfer, R.; Armstrong, R.; Berg, S.; Georgiadis, A.; Ott, H., Capillary saturation and desaturation, Phys. Rev. E, 92, Article 062023 pp. (2015)
[39] Alpak, F. O.; Zacharoudiou, I.; Berg, S.; Dietderich, J.; Saxena, N., Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units, Comput. Geosci., 23, 5, 849-880 (2019) · Zbl 1425.76196
[40] Stegemeier, G., Relationship of trapped oil saturation to petrophysical properties of porous media (1974), SPE 4754
[41] Yeganeh, M.; Hegner, J.; Lewandowski, E.; Mohan, A.; Lake, L. W.; Cherney, D.; Jusufi, A.; Jaishankar, A., Capillary desaturation curve fundamentals (2016), SPE-179574-MS
[42] Armstrong, R. T.; Georgiadis, A.; Ott, H.; Klemin, D.; Berg, S., Critical capillary number: desaturation studied with fast X-ray computed microtomography, Geophys. Res. Lett., 41, 1-6 (2014)
[43] Hilfer, R.; Oren, P., Dimensional analysis of pore scale and field scale immiscible displacement, Transp. Porous Media, 22, 1, 53-72 (1996)
[44] Nystrom, N. A.; Levine, M. J.; Roskies, R. Z.; Scott, J. R., Bridges: a uniquely flexible hpc resource for new communities and data analytics, (Proceedings of the 2015 XSEDE Conference: Scientific Advancements Enabled by Enhanced Cyberinfrastructure, XSEDE ’15 (2015)), Article 30 pp.
[45] Heroux, M. A.; Bartlett, R. A.; Howle, V. E.; Hoekstra, R. J.; Hu, J. J.; Kolda, T. G.; Lehoucq, R. B.; Long, K. R.; Pawlowski, R. P.; Phipps, E. T.; Salinger, A. G.; Thornquist, H. K.; Tuminaro, R. S.; Willenbring, J. M.; Williams, A.; Stanley, K. S., An overview of the Trilinos project, ACM Trans. Math. Softw., 31, 3, 397-423 (2005) · Zbl 1136.65354
[46] Thiele, C.; Araya-Polo, M.; Alpak, F. O.; Riviere, B.; Frank, F., Inexact hierarchical scale separation: a two-scale approach for linear systems from discontinuous Galerkin discretizations, Comput. Math. Appl., 74, 8, 1769-1778 (2017) · Zbl 1398.65088
[47] Helenbrook, B.; Mavriplis, D.; Atkins, H., Analysis of “p”-multigrid for continuous and discontinuous finite element discretizations, (16th AIAA Computational Fluid Dynamics Conference (2003), American Institute of Aeronautics and Astronautics)
[48] Tamstorf, R.; Jones, T.; McCormick, S. F., Smoothed aggregation multigrid for cloth simulation, ACM Trans. Graph., 34, 6, 1-13 (2015)
[49] Thiele, C.; Araya-Polo, M.; Alpak, F. O.; Riviere, B., Distributed parallel hybrid CPU-GPGPU implementation of the phase-field method for accelerated high-accuracy simulations of pore-scale two-phase flow, (SPE Reservoir Simulation Conference (2019), Society of Petroleum Engineers)
[50] Thiele, C., Composable p-hierarchical solver
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.