×

Congruence normality of simplicial hyperplane arrangements via oriented matroids. (English) Zbl 1487.52030

Let us recall that a catalogue of simplicial hyperplane arrangements was firstly provided by Grünbaum in 1971 [B. Grünbaum, in: Proc. 2nd Louisiana Conf. Combin., Graph Theory, Computing; Baton Rouge, 41–106 (1971; Zbl 0289.52004)]. Let us recall that a simplicial hyperplane arrangement in the real projective space is defined via its complement, namely the irreducible components of the complement are open simplices. These arrangements naturally generalize finite Coxeter arrangements and also the weak order through the poset of regions. The weak order is known to be a congruence normal lattice, and congruence normality of lattices of regions of simplicial arrangements can be determined using polyhedral cones, the so-called shards.
In the paper under review, the authors provide an update on Grünbaum’s catalogue by providing normals realizing all known simplicial arrangements with up to \(37\) lines and their key invariants. In order to due so, the authors add structure to this catalogue by determining which arrangements always/sometimes/never lead to congruence normal lattices of regions. In order to obtain their results, the authors use oriented matroids to recast shards as covectors to determine congruence normality of large hyperplane arrangements. Moreover, the authors show that lattices of regions coming from finite Weyl groupoids of any rank are always congruence normal.

MSC:

52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
14N20 Configurations and arrangements of linear subspaces
52C40 Oriented matroids in discrete geometry

Citations:

Zbl 0289.52004

Software:

SageMath; GAP; GitHub

References:

[1] Kira Adaricheva and James B. Nation, Classes of semidistributive lattices, Lattice theory: special topics and applications. Vol. 2, Birkhäuser/Springer, Cham, 2016, pp. 59-101. · Zbl 1477.06043
[2] Birkhoff, Garrett, On the combination of subalgebras, Math. Proc. Combridge Philos. Soc., 29, 4, 441-464 (1933) · JFM 59.0154.02 · doi:10.1017/S0305004100011464
[3] Björner, Anders; Edelman, Paul H.; Ziegler, Günter M., Hyperplane arrangements with a lattice of regions, Discrete Comput. Geom., 5, 3, 263-288 (1990) · Zbl 0698.51010 · doi:10.1007/BF02187790
[4] Anders Björner, Michel Las Vergnas, Bernd Sturmfels, Neil White, and Günter M. Ziegler, Oriented matroids, second ed., Encyclopedia of Mathematics and its Applications, vol. 46, Cambridge University Press, Cambridge, 1999. · Zbl 0944.52006
[5] Nathalie Caspard, Claude Le Conte de Poly-Barbut, and Michel Morvan, Cayley lattices of finite Coxeter groups are bounded, Adv. in Appl. Math. 33 (2004), no. 1, 71-94. · Zbl 1097.06001
[6] Cuntz, Michael, Crystallographic arrangements: Weyl groupoids and simplicial arrangements, Bull. Lond. Math. Soc., 43, 4, 734-744 (2011) · Zbl 1250.20034 · doi:10.1112/blms/bdr009
[7] Cuntz, Michael, Minimal fields of definition for simplicial arrangements in the real projective plane, Innov. Incidence Geom., 12, 49-60 (2011) · Zbl 1305.52026 · doi:10.2140/iig.2011.12.49
[8] Cuntz, Michael, Simplicial arrangements with up to 27 lines, Discrete Comput. Geom., 48, 3, 682-701 (2012) · Zbl 1254.52009 · doi:10.1007/s00454-012-9423-7
[9] Michael Cuntz, A greedy algorithm to compute arrangements of lines in the projective plane, preprint, arXiv:2006.14431 (2020), 15 pp.
[10] Cuntz, Michael; Heckenberger, István, Finite Weyl groupoids of rank three, Trans. Amer. Math. Soc., 364, 3, 1369-1393 (2012) · Zbl 1246.20037 · doi:10.1090/S0002-9947-2011-05368-7
[11] Cuntz, Michael; Heckenberger, István, Finite Weyl groupoids, J. Reine Angew. Math., 702, 77-108 (2015) · Zbl 1358.20037
[12] Cuntz, Michael; Mücksch, Paul, Supersolvable simplicial arrangements, Adv. in Appl. Math., 107, 32-73 (2019) · Zbl 1492.52009 · doi:10.1016/j.aam.2019.02.008
[13] Cuntz, Michael; Stump, Christian, On root posets for noncrystallographic root systems, Math. Comp., 84, 291, 485-503 (2015) · Zbl 1337.06001 · doi:10.1090/S0025-5718-2014-02841-X
[14] Day, Alan, Characterizations of finite lattices that are bounded-homomorphic images of sublattices of free lattices, Canad. J. Math., 31, 1, 69-78 (1979) · Zbl 0432.06007 · doi:10.4153/CJM-1979-008-x
[15] Day, Alan, Congruence normality: the characterization of the doubling class of convex sets, Algebra Universalis, 31, 3, 397-406 (1994) · Zbl 0804.06006 · doi:10.1007/BF01221793
[16] De, Jesús A., Loera, Jörg Rambau, and Francisco Santos, Triangulations, Algorithms and Computation in Mathematics (2010), Berlin: Springer-Verlag, Berlin · Zbl 1207.52002
[17] Dermenjian, Aram; Hohlweg, Christophe; Pilaud, Vincent, The facial weak order and its lattice quotients, Trans. Amer. Math. Soc., 370, 2, 1469-1507 (2018) · Zbl 1375.05270 · doi:10.1090/tran/7307
[18] Sophia Elia and Jean-Philippe Labbé, Congruence normality for hyperplane arrangements, https://github.com/sophiasage/cn_hyperarr (2020), version 0.0.1.
[19] Funayama, Nenosuke; Nakayama, Tadasi, On the distributivity of a lattice of lattice-congruences, Proc. Imp. Acad. Tokyo, 18, 553-554 (1942) · Zbl 0063.01483
[20] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.11.0, 2020.
[21] Geyer, Winfried, The generalized doubling construction and formal concept analysis, Algebra Universalis, 32, 3, 341-367 (1994) · Zbl 0829.06007 · doi:10.1007/BF01235175
[22] Branko Grünbaum, Arrangements of hyperplanes, Proceedings of the Second Louisiana Conference on Combinatorics, Graph Theory and Computing (Louisiana State Univ., Baton Rouge, La., 1971), 1971, pp. 41-106. · Zbl 0289.52004
[23] Grünbaum, Branko, A catalogue of simplicial arrangements in the real projective plane, Ars Math. Contemp., 2, 1, 1-25 (2009) · Zbl 1177.51020 · doi:10.26493/1855-3974.88.e12
[24] Heckenberger, István, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math., 164, 1, 175-188 (2006) · Zbl 1174.17011 · doi:10.1007/s00222-005-0474-8
[25] Heckenberger, István; Welker, Volkmar, Geometric combinatorics of Weyl groupoids, J. Algebraic Combin., 34, 1, 115-139 (2011) · Zbl 1252.20038 · doi:10.1007/s10801-010-0264-2
[26] Hohlweg, Christophe; Lange, Carsten E. M. C.; Thomas, Hugh, Permutahedra and generalized associahedra, Adv. Math., 226, 1, 608-640 (2011) · Zbl 1233.20035 · doi:10.1016/j.aim.2010.07.005
[27] Arnau Padrol, Vincent Pilaud, and Julian Ritter, Shard polytopes, preprint, arXiv:2007.01008 (July 2020), 70 pp.
[28] Pilaud, Vincent; Santos, Francisco, Quotientopes, Bull. Lond. Math. Soc., 51, 3, 406-420 (2019) · Zbl 1420.52015 · doi:10.1112/blms.12231
[29] Alexander Postnikov, Permutohedra, associahedra, and beyond, Int. Math. Res. Not. (2009), no. 6, 1026-1106. · Zbl 1162.52007
[30] Reading, Nathan, Lattice and order properties of the poset of regions in a hyperplane arrangement, Algebra Universalis, 50, 2, 179-205 (2003) · Zbl 1092.06006 · doi:10.1007/s00012-003-1834-0
[31] Nathan Reading, Lattice congruences of the weak order, Order 21 (2004), no. 4, 315-344 (2005). · Zbl 1097.20036
[32] Reading, Nathan, Cambrian lattices, Adv. Math., 205, 2, 313-353 (2006) · Zbl 1106.20033 · doi:10.1016/j.aim.2005.07.010
[33] Reading, Nathan, Lattice theory of the poset of regions, Lattice theory: special topics and applications, 399-487 (2016), Birkhäuser/Springer: Cham, Birkhäuser/Springer · Zbl 1404.06004 · doi:10.1007/978-3-319-44236-5_9
[34] The Sage Developers, Sagemath, the Sage Mathematics Software System (Version 9.1), 2020, https://www.sagemath.org.
[35] Günter, M., Ziegler, Lectures on polytopes, GTM (1995), New York: Springer-Verlag, New York · Zbl 0823.52002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.