×

Finite Weyl groupoids of rank three. (English) Zbl 1246.20037

The symmetry of a classical root system associated with a Cartan matrix is described by the corresponding Weyl group. There are more general root systems which are associated to a family of Cartan matrices (the so-called ‘Cartan schemes’). The corresponding symmetry is not a group but a groupoid, called the Weyl groupoid of the root system.
In the paper under review the authors obtain a complete list of all simply connected Cartan schemes of rank three for which real roots form a finite irreducible root system. To prove this the authors provide an algorithm which determines all root systems and eventually terminates. It turns out that, up to equivalence, there are \(55\) such Cartan schemes. As an application, Weyl groupoids which appear in the classification of Nichols algebras of diagonal type are determined.

MSC:

20F55 Reflection and Coxeter groups (group-theoretic aspects)
17B22 Root systems
16T30 Connections of Hopf algebras with combinatorics
52C30 Planar arrangements of lines and pseudolines (aspects of discrete geometry)

References:

[1] N. Bourbaki, Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines, Actualités Scientifiques et Industrielles, No. 1337, Hermann, Paris, 1968 (French). · Zbl 0186.33001
[2] M. Cuntz and I. Heckenberger, Reflection groupoids of rank two and cluster algebras of type \( {A}\), Preprint arXiv:0911.3051v1 (2009), 18 pp. · Zbl 1231.05305
[3] Michael Cuntz and István Heckenberger, Weyl groupoids of rank two and continued fractions, Algebra Number Theory 3 (2009), no. 3, 317 – 340. · Zbl 1181.20035 · doi:10.2140/ant.2009.3.317
[4] M. Cuntz and I. Heckenberger, Weyl groupoids with at most three objects, J. Pure Appl. Algebra 213 (2009), no. 6, 1112 – 1128. · Zbl 1169.20020 · doi:10.1016/j.jpaa.2008.11.009
[5] Branko Grünbaum, A catalogue of simplicial arrangements in the real projective plane, Ars Math. Contemp. 2 (2009), no. 1, 1 – 25. · Zbl 1177.51020
[6] István Heckenberger, Classification of arithmetic root systems of rank 3, Proceedings of the XVIth Latin American Algebra Colloquium (Spanish), Bibl. Rev. Mat. Iberoamericana, Rev. Mat. Iberoamericana, Madrid, 2007, pp. 227 – 252. · Zbl 1197.17003
[7] I. Heckenberger, The Weyl groupoid of a Nichols algebra of diagonal type, Invent. Math. 164 (2006), no. 1, 175 – 188. · Zbl 1174.17011 · doi:10.1007/s00222-005-0474-8
[8] I. Heckenberger, Rank 2 Nichols algebras with finite arithmetic root system, Algebr. Represent. Theory 11 (2008), no. 2, 115 – 132. · Zbl 1175.17003 · doi:10.1007/s10468-007-9060-7
[9] I. Heckenberger and H. Yamane, A generalization of Coxeter groups, root systems, and Matsumoto’s theorem, Math. Z. 259 (2008), 255-276. · Zbl 1198.20036
[10] V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8 – 96. · Zbl 0366.17012 · doi:10.1016/0001-8708(77)90017-2
[11] Victor G. Kac, Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. · Zbl 0716.17022
[12] E. Melchior, Über Vielseite der projektiven Ebene, Deutsche Math. 5 (1941), 461 – 475 (German). · JFM 67.0733.04
[13] Tammo tom Dieck, Topologie, de Gruyter Lehrbuch. [de Gruyter Textbook], Walter de Gruyter & Co., Berlin, 1991 (German). · Zbl 0731.55001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.