×

A note on branching of \(V( \rho )\). (English) Zbl 1487.17019

Given a complex semisimple Lie algebra \(\mathfrak{g}\) and the subalgebra \(\mathfrak{g}_0 \subset \mathfrak{g}\) fixed by a diagram automorphism of \(\mathfrak{g}\), the authors investigate a branching problem on \((\mathfrak{g}, \mathfrak{g}_0)\). Let \(d\) be a saturation factor given by \((\mathfrak{g}, \mathfrak{g}_0)\), \(\rho\)(resp. \(\rho_0\)) be the half sum of positive roots in a root system of \(\mathfrak{g}\) (resp. \(\mathfrak{g}_0)\)) and \(\mu\) be a dominant weight of \(\mathfrak{g}_0\). The main result of the paper is to give a necessary and sufficient condition for the irreducible highest weight \(\mathfrak{g}_0\)-module \(V_0(d\mu)\) to occur in the restriction of the irreducible \(\mathfrak{g}\)-module \(V(d\mu)\) to \(\mathfrak{g}_0\).

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B20 Simple, semisimple, reductive (super)algebras

References:

[1] Bourbaki, N., Éléments de mathématique (1981), Masson: Masson Paris, Groupes et algèbres de Lie. Chapitres 4, 5 et 6. [Lie Groups and Lie Algebras. Chapters 4, 5 and 6] · Zbl 0498.12001
[2] Brion, M., Restriction de représentations et projections d’orbites coadjointes (d’après Belkale, Kumar et Ressayre) (2013), Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043-1058 · Zbl 1295.22029
[3] Chirivì, R.; Kumar, S.; Maffei, A., Components of \(V(\rho) \otimes V(\rho)\), Transform. Groups, 22, 3, 645-650 (2017) · Zbl 1422.17010
[4] Hall, B. C., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2003), Springer-Verlag: Springer-Verlag New York · Zbl 1026.22001
[5] Kostant, B., Lie algebra cohomology and the generalized Borel-Weil theorem, Ann. Math. (2), 74, 329-387 (1961) · Zbl 0134.03501
[6] Kostant, B., Clifford algebra analogue of the Hopf-Koszul-Samelson theorem, the ρ-decomposition \(C(\mathfrak{g}) = \operatorname{End} V_\rho \otimes C(P)\), and the \(\mathfrak{g} \)-module structure of \(\wedge \mathfrak{g} \), Adv. Math., 125, 2, 275-350 (1997) · Zbl 0882.17002
[7] Kumar, S., A survey of the additive eigenvalue problem, Transform. Groups, 19, 4, 1051-1148 (2014), With an appendix by M. Kapovich · Zbl 1354.14074
[8] Panyushev, D. I., The exterior algebra and “spin” of an orthogonal \(\mathfrak{g} \)-module, Transform. Groups, 6, 4, 371-396 (2001) · Zbl 0994.17004
[9] Pasquier, B.; Ressayre, N., The saturation property for branching rules—examples, Exp. Math., 22, 3, 299-312 (2013) · Zbl 1280.22017
[10] Ressayre, N., Geometric invariant theory and the generalized eigenvalue problem, Invent. Math., 180, 2, 389-441 (2010) · Zbl 1197.14051
[11] Ressayre, N.; Richmond, E., Branching Schubert calculus and the Belkale-Kumar product on cohomology, Proc. Am. Math. Soc., 139, 3, 835-848 (2011) · Zbl 1231.14038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.