×

Closed-form time derivatives of the equations of motion of rigid body systems. (English) Zbl 1483.70026

Summary: Derivatives of equations of motion (EOM) describing the dynamics of rigid body systems are becoming increasingly relevant for the robotics community and find many applications in design and control of robotic systems. Controlling robots, and multibody systems comprising elastic components in particular, not only requires smooth trajectories but also the time derivatives of the control forces/torques, hence of the EOM. This paper presents the time derivatives of the EOM in closed form up to second-order as an alternative formulation to the existing recursive algorithms for this purpose, which provides a direct insight into the structure of the derivatives. The Lie group formulation for rigid body systems is used giving rise to very compact and easily parameterized equations.

MSC:

70E55 Dynamics of multibody systems
70E60 Robot dynamics and control of rigid bodies
70G65 Symmetries, Lie group and Lie algebra methods for problems in mechanics

Software:

ADOL-C; Crocoddyl

References:

[1] Buondonno, G.; De Luca, A., A recursive Newton-Euler algorithm for robots with elastic joints and its application to control, 2015 IEEE/RSJ IROS, 5526-5532 (2015)
[2] Buondonno, G.; De Luca, A., Efficient computation of inverse dynamics and feedback linearization for VSA-based robots, IEEE Robot. Autom. Lett., 1, 2, 908-915 (2016) · doi:10.1109/LRA.2016.2526072
[3] Carpentier, J.; Mansard, N., Analytical derivatives of rigid body dynamics algorithms, Robotics: Science and Systems (2018)
[4] De Jong, J. J.; Wu, Y. Q.; Carricato, M.; Herder, J. L., A pure-inertia method for dynamic balancing of symmetric planar mechanisms, Advances in Robot Kinematics, 1-8 (2018)
[5] de Jong, J. J.; Müller, A.; Herder, J. L., Higher-order derivatives of rigid body dynamics with application to the dynamic balance of spatial linkages, Mech. Mach. Theory, 155 (2021) · doi:10.1016/j.mechmachtheory.2020.104059
[6] De Luca, A., Decoupling and feedback linearization of robots with mixed rigid/elastic joints, Int. J. Robust Nonlinear Control, 8, 965-977 (1998) · Zbl 0914.93038 · doi:10.1002/(SICI)1099-1239(199809)8:11<965::AID-RNC371>3.0.CO;2-4
[7] Featherstone, R., Rigid Body Dynamics Algorithms (2008), Berlin: Springer, Berlin · Zbl 1146.70002 · doi:10.1007/978-1-4899-7560-7
[8] Garofalo, G.; Ott, C.; Albu-Schäffer, A., On the closed form computation of the dynamic matrices and their differentiations, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2364-2369 (2013) · doi:10.1109/IROS.2013.6696688
[9] Gattringer, H., Recursive methods in control of flexible joint manipulators, Multibody Syst. Dyn., 32, 117-131 (2014) · Zbl 1351.70006 · doi:10.1007/s11044-013-9391-6
[10] Guarino Lo Bianco, C., Evaluation of generalized force derivatives by means of a recursive Newton-Euler approach, IEEE Trans. Robot., 25, 4, 954-959 (2009) · doi:10.1109/TRO.2009.2024787
[11] Guarino Lo Bianco, C.; Fantini, E., A recursive Newton-Euler approach for the evaluation of generalized forces derivatives, 12th IEEE Int. Conf. Methods Models Autom. Robot., 739-744 (2006)
[12] Ha, S.; Coros, S.; Alspach, A.; Kim, J.; Yamane, K., Joint optimization of robot design and motion parameters using the implicit function theorem, Robotics: Science and Systems (2017)
[13] Jain, A., Robot and Multibody Dynamics (2011), US: Springer, US · Zbl 1215.70001 · doi:10.1007/978-1-4419-7267-5
[14] Kumar, S.: Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots. PhD diss., Universität Bremen (2019)
[15] Kumar, S.; Mueller, A., Nth order analytical time derivatives of inverse dynamics in recursive and closed forms, 2021 IEEE International Conference on Robotics and Automation (ICRA) (2021)
[16] Kumar, S.; Szadkowski, K. A.V.; Mueller, A.; Kirchner, F., An analytical and modular software workbench for solving kinematics and dynamics of series-parallel hybrid robots, J. Mech. Robot., 12, 2 (2020) · doi:10.1115/1.4045941
[17] Lee, S.-H.; Kim, J.; Park, F. C.; Kim, M.; Bobrow, J. E., Newton-type algorithms for dynamics-based robot movement optimization, IEEE Trans. Robot., 21, 4, 657-667 (2005) · doi:10.1109/TRO.2004.842336
[18] Lynch, K. M.; Park, F. C., Modern Robotics (2017), Cambridge: Cambridge University Press, Cambridge
[19] Mastalli, C.; Budhiraja, R.; Merkt, W.; Saurel, G.; Hammoud, B.; Naveau, M.; Carpentier, J.; Vijayakumar, S.; Mansard, N., Crocoddyl: an efficient and versatile framework for multi-contact optimal control, 2020 IEEE International Conference on Robotics and Automation (ICRA), 2536-2542 (2020) · doi:10.1109/ICRA40945.2020.9196673
[20] Müller, A., Coordinate mappings for rigid body motions, J. Comput. Nonlinear Dyn., 12, 2 (2017) · doi:10.1115/1.4034730
[21] Müller, A., Recursive second-order inverse dynamics for serial manipulators, IEEE Int. Conf. Robotics Automations (ICRA) (2017)
[22] Müller, A., Screw and Lie group theory in multibody dynamics – motion representation and recursive kinematics of tree-topology systems, Multibody Syst. Dyn., 43, 1, 1-34 (2018) · Zbl 1400.70021 · doi:10.1007/s11044-017-9582-7
[23] Müller, A., Screw and Lie group theory in multibody dynamics – recursive algorithms and equations of motion of tree-topology systems, Multibody Syst. Dyn., 42, 2, 219-248 (2018) · Zbl 1400.70020 · doi:10.1007/s11044-017-9583-6
[24] Müller, A., An \(O(n)\)-algorithm for the higher-order kinematics and inverse dynamics of serial manipulators using spatial representation of twists, IEEE Robot. Autom. Lett., 6, 2, 397-404 (2021) · doi:10.1109/LRA.2020.3044028
[25] Murray, R. M.; Li, Z.; Sastry, S. S., A Mathematical Introduction to Robotic Manipulation (1994), Boca Raton: CRC Press, Boca Raton · Zbl 0858.70001
[26] Palli, G.; Melchiorri, C.; De Luca, A., On the feedback linearization of robots with variable joint stiffness, IEEE Int. Conf. Rob. Aut. (IROS) (2008)
[27] Reiter, A.; Müller, A.; Gattringer, H., On higher-order inverse kinematics methods in time-optimal trajectory planning for kinematically redundant manipulators, IEEE Trans. Ind. Inform., 14, 4, 1681-1690 (2018) · doi:10.1109/TII.2018.2792002
[28] Selig, J., Geometric Fundamentals of Robotics (2005), New York: Springer, New York · Zbl 1062.93002
[29] Stürz, Y. R.; Affolter, L. M.; Smith, R. S., Parameter identification of the KUKA LBR iiwa robot including constraints on physical feasibility, IFAC-PapersOnLine, 50, 1, 6863-6868 (2017) · doi:10.1016/j.ifacol.2017.08.1208
[30] Van der Wijk, V.; Krut, S.; Pierrot, F.; Herder, J. L., Design and experimental evaluation of a dynamically balanced redundant planar 4-RRR parallel manipulator, Int. J. Robot. Res., 32, 6, 744-759 (2013) · doi:10.1177/0278364913484183
[31] Walther, A.; Griewank, A., Getting started with ADOL-C, Comb. Sci. Comput., 09061, 181-202 (2009)
[32] Wu, Y.; Gosselin, C. M., Synthesis of reactionless spatial 3-DoF and 6-DoF mechanisms without separate counter-rotations, Int. J. Robot. Res., 23, 6, 625-642 (2004) · doi:10.1177/0278364904044400
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.