×

A collision control strategy for detumbling a non-cooperative spacecraft by a robotic arm. (English) Zbl 1483.70030

Summary: Using a space robot to capture a non-cooperative spacecraft with high-speed rotation is significantly challenging since any collision generated during capturing will have great impact on both. To reduce the risk in capturing operations, it is crucial to slow down the rotation velocity of the target before capturing. Hence, this paper studies a collision control strategy for using a robotic arm to detumble a non-cooperative spacecraft. The goal of this strategy is to maintain contact between the robot and the target and to apply continuous detumbling force on the target to slow down its rotational motion. To achieve that, first the mechanism analysis of the two balls for a central collision scenario is performed. Then an overdamping control method is proposed to avoid the separation of the balls after the central collision based on the overdamping property of the mass-spring-damper system, the effectiveness of which is validated theoretically. Finally, to use this overdamping control method in the detumbling missions of space robots, a position-based overdamping control strategy is introduced. In this strategy, the relative dynamic behavior between the robotic arm tip and the contact surface of the target during detumbling is approximated to that of a mass-spring-damper system. Owing to the proposed overdamping control method, the contact between the robot and the target can be maintained, and the space robot can apply continuous control torque to slow down the rotational velocity of the target. Numerical simulations are performed to demonstrate the validity of the proposed control strategy.

MSC:

70E60 Robot dynamics and control of rigid bodies
Full Text: DOI

References:

[1] Akin, D.; Sullivan, B., A survey of serviceable spacecraft failures, AIAA Space 2001 Conference and Exposition, 1-8 (2001), Reston: American Institute of Aeronautics and Astronautics, Reston
[2] Tafazoli, M., A study of on-orbit spacecraft failures, Acta Astronaut., 64, 195-205 (2009) · doi:10.1016/j.actaastro.2008.07.019
[3] Bonnal, C.; Ruault, J. M.; Desjean, M. C., Active debris removal: recent progress and current trends, Acta Astronaut., 85, 51-60 (2013) · doi:10.1016/j.actaastro.2012.11.009
[4] Gómez, N. O.; Walker, S. J.I., Earth’s gravity gradient and eddy currents effects on the rotational dynamics of space debris objects: Envisat case study, Adv. Space Res., 56, 494-508 (2015) · doi:10.1016/j.asr.2014.12.031
[5] Liu, X.; Lu, Y.; Zhang, Q.; Zhang, K., An application of eddy current effect on the active detumble of uncontrolled satellite with tilt air gap, IEEE Trans. Magn., 55, 1-11 (2019)
[6] Sugai, F.; Abiko, S.; Tsujita, T.; Xin, J.; Uchiyama, M., Development of an eddy current brake system for detumbling malfunctioning satellites, 2012 IEEE/SICE International Symposium on System Integration (SII), 325-330 (2012) · doi:10.1109/SII.2012.6427330
[7] Avanzini, G.; Giulietti, F., Magnetic detumbling of a rigid spacecraft, J. Guid. Control Dyn., 35, 1326-1334 (2012) · doi:10.2514/1.53074
[8] Gómez, N. O.; Walker, S. J.I., Eddy currents applied to detumbling of space debris: analysis and validation of approximate proposed methods, Acta Astronaut., 114, 34-53 (2015) · doi:10.1016/j.actaastro.2015.04.012
[9] Gómez, N. O.; Walker, S. J.I., Guidance, navigation, and control for the eddy brake method, J. Guid. Control Dyn., 40, 52-68 (2017) · doi:10.2514/1.G002081
[10] Liu, X.; Lu, Y.; Zhou, Y.; Yin, Y., Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target, Adv. Space Res., 61, 2147-2158 (2018) · doi:10.1016/j.asr.2018.01.033
[11] Bennett, T.; Schaub, H., Touchless electrostatic three-dimensional detumbling of large axi-symmetric debris, J. Astronaut. Sci., 62, 233-253 (2015) · doi:10.1007/s40295-015-0075-8
[12] Bennett, T.; Schaub, H., Contactless electrostatic detumbling of axi-symmetric GEO objects with nominal pushing or pulling, Adv. Space Res., 62, 2977-2987 (2018) · doi:10.1016/j.asr.2018.07.021
[13] Bombardelli, C.; Peláez, J., Ion beam shepherd for contactless space debris removal, J. Guid. Control Dyn., 34, 916-920 (2011) · doi:10.2514/1.51832
[14] Nakajima, Y.; Mitani, S.; Tani, H.; Murakami, N.; Yamamoto, T.; Yamanaka, K., Detumbling space debris via thruster plume impingement, AIAA/AAS Astrodynamics Specialist Conference, 1-20 (2016), Reston: American Institute of Aeronautics and Astronautics, Reston
[15] Nakajima, Y.; Tani, H.; Yamamoto, T.; Murakami, N.; Mitani, S.; Yamanaka, K., Contactless space debris detumbling: a database approach based on computational fluid dynamics, J. Guid. Control Dyn., 41, 1906-1918 (2018) · doi:10.2514/1.G003451
[16] Nishida, S. I.; Kawamoto, S., Strategy for capturing of a tumbling space debris, Acta Astronaut., 68, 113-120 (2011) · doi:10.1016/j.actaastro.2010.06.045
[17] Liu, Y.-Q.; Yu, Z.-W.; Liu, X.-F.; Chen, J.-B.; Cai, G.-P., Active detumbling technology for noncooperative space target with energy dissipation, Adv. Space Res., 63, 1813-1823 (2019) · doi:10.1016/j.asr.2018.11.017
[18] Liu, Y.-Q.; Yu, Z.-W.; Liu, X.-F.; Cai, G.-P., Active detumbling technology for high dynamic non-cooperative space targets, Multibody Syst. Dyn., 47, 21-41 (2019) · Zbl 1420.70002 · doi:10.1007/s11044-019-09675-3
[19] Cheng, W.; Li, Z.; He, Y., Modeling and analysis of contact detumbling by using flexible brush, 2019 IEEE International Conference on Unmanned Systems (ICUS), 95-102 (2019) · doi:10.1109/ICUS48101.2019.8996009
[20] Uyama, N.; Narumi, T., Hybrid impedance/position control of a free-flying space robot for detumbling a noncooperative satellite, IFAC-PapersOnLine, 49, 230-235 (2016) · doi:10.1016/j.ifacol.2016.09.040
[21] Chen, G.; Wang, Y.; Wang, Y.; Liang, J.; Zhang, L.; Pan, G., Detumbling strategy based on friction control of dual-arm space robot for capturing tumbling target, Chin. J. Aeronaut., 33, 1093-1106 (2020) · doi:10.1016/j.cja.2019.04.019
[22] Hovell, K.; Ulrich, S., Attitude stabilization of an uncooperative spacecraft in an orbital environment using visco-elastic tethers, AIAA Guidance, Navigation, and Control Conference (2016), Reston: American Institute of Aeronautics and Astronautics, Reston
[23] O’Connor, W. J.; Hayden, D. J., Detumbling of space debris by a net and elastic tether, J. Guid. Control Dyn., 40, 1829-1836 (2017) · doi:10.2514/1.G001838
[24] Yoshida, K.; Nakanishi, H.; Ueno, H.; Inaba, N.; Nishimaki, T.; Oda, M., Dynamics, control and impedance matching for robotic capture of a non-cooperative satellite, Adv. Robot., 18, 175-198 (2004) · doi:10.1163/156855304322758015
[25] Abiko, S.; Lampariello, R.; Hirzinger, G., Impedance control for a free-floating robot in the grasping of a tumbling target with parameter uncertainty, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1020-1025 (2006) · doi:10.1109/IROS.2006.281785
[26] Stolfi, A.; Gasbarri, P.; Sabatini, M., A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target, Acta Astronaut., 139, 243-253 (2017) · doi:10.1016/j.actaastro.2017.07.014
[27] Liu, X.-F.; Li, H.-Q.; Chen, Y.-J.; Cai, G.-P.; Wang, X., Dynamics and control of capture of a floating rigid body by a spacecraft robotic arm, Multibody Syst. Dyn., 33, 315-332 (2015) · Zbl 1391.70017 · doi:10.1007/s11044-014-9434-7
[28] Lankarani, H. M.; Nikravesh, P. E., A contact force model with hysteresis damping for impact analysis of multibody systems, J. Mech. Des., 112, 369-376 (1990) · doi:10.1115/1.2912617
[29] Banerjee, A.; Chanda, A.; Das, R., Historical origin and recent development on normal directional impact models for rigid body contact simulation: a critical review, Arch. Comput. Methods Eng., 24, 397-422 (2017) · Zbl 1364.74067 · doi:10.1007/s11831-016-9164-5
[30] Carvalho, A. S.; Martins, J. M., Exact restitution and generalizations for the Hunt-Crossley contact model, Mech. Mach. Theory, 139, 174-194 (2019) · doi:10.1016/j.mechmachtheory.2019.03.028
[31] Safaeifar, H.; Farshidianfar, A., A new model of the contact force for the collision between two solid bodies, Multibody Syst. Dyn., 50, 233-257 (2020) · Zbl 1457.74157 · doi:10.1007/s11044-020-09732-2
[32] Ma, J.; Qian, L.; Chen, G.; Li, M., Dynamic analysis of mechanical systems with planar revolute joints with clearance, Mech. Mach. Theory, 94, 148-164 (2015) · doi:10.1016/j.mechmachtheory.2015.08.011
[33] Zhang, J.; Li, W.; Zhao, L.; He, G., A continuous contact force model for impact analysis in multibody dynamics, Mech. Mach. Theory, 153 (2020) · doi:10.1016/j.mechmachtheory.2020.103946
[34] Moosavian, S. A.A.; Papadopoulos, E., Free-flying robots in space: an overview of dynamics modeling, planning and control, Robotica, 25, 537-547 (2007) · doi:10.1017/S0263574707003438
[35] Wang, X.; Zhou, Z.; Chen, Y., Optimal contact control for space debris detumbling and nutation damping, Adv. Space Res., 66, 4, 951-962 (2020) · doi:10.1016/j.asr.2020.04.043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.