×

On the relationships between some approaches to the solution of Kirkwood-Salsburg equations. (English. Ukrainian original) Zbl 1489.82020

Ukr. Math. J. 73, No. 3, 447-462 (2021); translation from Ukr. Mat. Zh. 73, No. 3, 381-394 (2021).
Summary: We propose a brief survey devoted to the description of the solutions of Kirkwood-Salsburg equations for correlation functions in the grand canonical ensemble. We establish analytic relationships between the Ruelle operator approach described in detail in [D. Ruelle, Statistical mechanics. Rigorous results. New York-Amsterdam: W. A. Benjamin, Inc. (1969; Zbl 0177.57301)] and the approach developed by R. A. Minlos and S. K. Pogosyan in [“Estimates of Ursell functions, group functions, and their derivatives” (Russian), Teor. Mat. Fiz. 31, No. 2, 199–213 (1977)]. Based on the methods of infinite-dimensional analysis, we propose a more transparent description of the main results.

MSC:

82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
82C22 Interacting particle systems in time-dependent statistical mechanics
82B20 Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs arising in equilibrium statistical mechanics
45H05 Integral equations with miscellaneous special kernels

Citations:

Zbl 0177.57301
Full Text: DOI

References:

[1] D. Ruelle, Statistical Mechanics. Rigorous Results, Benjamin, New York-Amsterdam (1969). · Zbl 0177.57301
[2] Minlos, RA; Pogosyan, SK, Estimates of Ursell functions, group functions, and their derivatives, Teor. Mat. Fiz., 31, 2, 199-213 (1977) · doi:10.1007/BF01036671
[3] Ruelle, D., Correlation functions of classical gases, Ann. Phys., 25, 1, 109-120 (1963) · doi:10.1016/0003-4916(63)90336-1
[4] Bogolyubov, NN; Petrina, DY; Khatset, BI, Mathematical description of the equilibrium state of classical systems based on the canonical ensemble formalism, Teor. Mat. Fiz., 1, 2, 251-274 (1969) · doi:10.1007/BF01028046
[5] Bogolyubov, NN; Khatset, BI, On some mathematical problems in the theory of statistical equilibrium, Dokl. Akad. Nauk SSSR, 66, 3, 321-324 (1949) · Zbl 0039.21701
[6] B. I. Khatset, “Asymptotic expansions in power of the density of distribution function of systems in the state of statistical equilibrium,” Nauk. Zap. Zhytomyr. Ped. Ins., Fiz.-Mat. Ser., 3, 113-139 (1956).
[7] O. Penrose, Convergence of Fugacity Expansions for Classical Systems, W. A. Benjamin, Inc., New York (1967).
[8] Fernandez, R.; Procacci, A., Cluster expansion for abstract polymer models. New bounds from an old approach, Commun. Math. Phys., 274, 123-140 (2007) · Zbl 1206.82148 · doi:10.1007/s00220-007-0279-2
[9] S. Ramawadhand and S. J. Tate, Virial Expansion Bounds Through Tree Partition Schemes, Preprint, arXiv: 1501.00509 [math-ph] (2015).
[10] Yu. G. Kondratiev, T. Pasurek, and M. Röckner, “Gibbs measures of continuous systems: an analytic approach,” Rev. Math. Phys., 24, No. 10, Article 1250026-1 (2012). · Zbl 1267.82029
[11] Albeverio, S.; Kondratiev, YG; Röckner, M., Analysis and geometry on configuration spaces, J. Funct. Anal., 154, 2, 444-500 (1998) · Zbl 0914.58028 · doi:10.1006/jfan.1997.3183
[12] Parthasarathy, KR, Probability Measure on Metric Spaces (1967), Probability and Mathematical Statistics: Academic Press, New York, Probability and Mathematical Statistics · Zbl 0153.19101 · doi:10.1016/B978-1-4832-0022-4.50006-5
[13] Dobrushin, RL, Description of a random field by conditional probabilities and conditions for its regularity, Teor. Ver. Primen., 13, 2, 201-229 (1968) · Zbl 0184.40403
[14] R. L. Dobrushin, “Gibbs states. General case,” Funkts. Anal. Prilozhen., 3, Issue 1, 27-35 (1969). · Zbl 0192.61801
[15] Lanford, OE; Ruelle, D., Observables at infinity and states with short range correlations in statistical mechanics, Commun. Math. Phys., 13, 3, 194-215 (1969) · Zbl 1522.82003 · doi:10.1007/BF01645487
[16] Ruelle, D., Superstable interactions in classical statistical mechanics, Commun. Math. Phys., 18, 2, 127-159 (1970) · Zbl 0198.31101 · doi:10.1007/BF01646091
[17] D. Ya. Petrina, V. I. Gerasimenko, and P. V. Malyshev, Mathematical Foundations of Classical Statistical Mechanics, Gordon & Breach, New York (1995). · Zbl 0728.46054
[18] T. Kuna, Studies in Configuration Space Analysis and Applications, PhD Thesis, Univ. Bonn (1999). · Zbl 0960.60101
[19] O. L. Rebenko and V. A. Bolukh, “Infinite-dimensional analysis and statistical mechanics,” in: Proc. of the Institute of Mathematics, Ukrainian National Academy of Sciences [in Ukrainian], 11, No. 1 (2014), pp. 257-315. · Zbl 1313.82001
[20] N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics [in Russian], Gostekhizdat, Moscow (1946).
[21] Berezansky, YM; Kondratiev, YG, Spectral Methods in Infinite-Dimensional Analysis (1995), Dordrecht: Kluwer Academic Publishers, Dordrecht · Zbl 0832.47001 · doi:10.1007/978-94-011-0509-5
[22] T. C. Dorlas, A. L. Rebenko, and B. Savoie, “Correlation of clusters: partially truncated correlation functions and their decay,” J. Math. Phys., 61, No. 3, Article 033301 (2020). · Zbl 1434.82041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.